Does this iteration end?
The
procedure is easy to understand; we take any integer N (for example N = 1124),
make the sum S of its digits (S = 8 here) and concatenate S at the end of N (we
get 11248).
We
iterate from there until the leftmost digit d of N appears in S: we then
erase all d’s of the last concatenation – and start from there a new
iteration.
Example:
1124
11248
1124816 (hit:
the digit d = 1 appears in S = 16)
2486 (we
have erased all 1s of the last concatenation)
248620
(hit again: the digit d = 2 appears in S = 20)
4860 (we
have erased all 2s of the last concatenation)
486018
48601827
4860182736…
Wait, what
happens if we bump into a leading zero? Let’s go on with our example to see the
rule:
486018273645
(hit: the digit d = 4 appears in S = 45)
8601827365
860182736546
86018273654656
8601827365465667
860182736546566780
(hit: the digit d = 8 appears in S = 80)
601273654656670
60127365465667064
(hit: the digit d = 6 appears in S = 64)
01273545704
(we have now a leading zero)
Rule: we
leave the above string as it is and iterate from there, as we’ve done so
far (the leading zero will appear at some point in some S)
0127354570438
012735457043849
01273545704384962
0127354570438496270
(hit: the digit d = 0 appears in S = 70)
1273545743849627
Etc.
You’ve
certainly noticed that the starting N of the above example (N = 1124) is
nothing else but the beginning of the sequence starting with N = 11.
As all
the sequences that start with 0 < N < 11 end almost immediately (N = 10, 101,
0), we could ask ourselves if the sequence produced by N = 11 ends at some
point? Grows forever? Loops? Vanishes?
Forgive,
as always, the typos left in this message/computations; I hope the idea is
clear.
Best,
É.
__________
Update, a couple of hours after this was sent to Math-Fun:
[Michael Branicky]:
> Eric, I get it ending in the empty string after 1399142 steps
[Me]:
> Waooooow, Michael!
> I'm k.o.!
> Do you still have the longest string of yr computation?
> And what about another start (like N = 12)
> (no, just kidding!-)
> Best,
> É.
[Michael]:
> Eric,
> starting at "11", the longest string encountered:
444444414144444454144444145454455155154545515454564756517555545657676664465677675961617616416561527541551562575592651853254255356658359962263264365667368971272273374676377982812823836853869892911922935952968991101010121016
(length 222)
>"12" ends at step 384831
>See
https://colab.research.google.com/drive/1LtQlt32jYCRB08LOE5-RmZb-FEYZrAug
for link to Python Notebook
>Cheers,
>Michael
[Hans Havermann]:
>> [Eric asks]: "Do you still have the longest string of yr computation?"
> I guess we can both check this against Michael's response. :) At step 1011800 we have the length-222 string:
444444414144444454144444145454455155154545515454564756517555545657676664465677675961617616416561527541551562575592651853254255356658359962263264365667368971272273374676377982812823836853869892911922935952968991101010121016
[Hans to Eric]:
> "At step 1011800 we have the length-222 string"
I didn't know we were starting with "11" (I started with "1124"). So it is at step 1011802. That explains my difference of 2 for the total number of steps before reaching the empty string[Hans, exploring this idea further]:
> The smallest number that does not disappear is 25.
step # 0 = 25
step # 1 = 257
step # 2 = 25714
step # 3 = 2571419
step # 4 = 5714199
step # 5 = 571419936
step # 6 = 714199364
step # 7 = 71419936444
step # 8 = 7141993644452
step # 9 = 714199364445259
step #10 = 141993644452593
... step #209860 = 86690889849611111412012312914114719139152160167
step #209861 = 669094961111141201231291411471913915216016711
... step #776829 = 7577447547597444393374947933393373393543339337317383413493533735358374388474184314394554694885851481494511518532542553566583599622632643656673689712722733746763779828128238368538698929119229359529689911010101210161024103110361046
... step #793652 = 86688909849611111412012312914114719139152160167
step #793653 = 669094961111141201231291411471913915216016711
The string at #209861 repeats at #793653 (but from a different precursor), creating a loop of length 583792. #776829 gives the maximum, which will of course repeat at #776829+583792n for positive n.[Hans again, a couple of hours later on Math-Fun]:
http://cinquantesignes.blogspot.com/2022/07/does-this-iteration-end-sum-and-erase.html
Eric's procedure appears to mostly vanish small starting integer strings but there are cycles: 25, 31, 63, 67, 69, 77, 92, 96, 99, 105, 109, 116, 133, 138, 148, 152, 161, 162, 163, 168, 174, 194, 197, 198, 206, ... run into them, or rather into it, since it's always the same length-583792 cycle, call it c3374 after its shortest string. Can anyone find any other cycle?
_______________________________
... Beautiful discovery, Hans, many thanks!
See hereunder how an integer like 282 vanishes:
step #0 = 282
step #1 = 28212 (hit: the digit d = 2 appears in S = 12)
step #2 = 81
step #3 = 819
step #4 = 81918 (hit: the digit d = 8 appears in S = 18)
step #5 = 191
step #6 = 19111 (hit: the digit d = 1 appears in S = 11)
step #7 = 9
step #8 = 99 (hit: the digit d = 9 appears in S = 9)
step #9 = .. (vanishes)
The same 9-step vanishing would happen with 228, of course – but not with 822...
(to be continued?)
___________________________________
Yes! Hans wrote another couple of hours later:
[Hans]:
"... it's always the same length-583792 cycle, call it c3374 after its shortest string. Can anyone find any other cycle?"
I didn't think that there would be any short cycles, but I did find one: length-49, c5464644657500000011711019071641751. Here's how it goes:
step #0 = 5464644657500000011711019071641751
step #1 = 5464644657500000011711019071641751109
step #2 = 5464644657500000011711019071641751109119
step #3 = 5464644657500000011711019071641751109119130
step #4 = 5464644657500000011711019071641751109119130134
step #5 = 5464644657500000011711019071641751109119130134142
step #6 = 5464644657500000011711019071641751109119130134142149
step #7 = 5464644657500000011711019071641751109119130134142149163
step #8 = 5464644657500000011711019071641751109119130134142149163173
step #9 = 5464644657500000011711019071641751109119130134142149163173184
step #10 = 5464644657500000011711019071641751109119130134142149163173184197
step #11 = 5464644657500000011711019071641751109119130134142149163173184197214
step #12 = 5464644657500000011711019071641751109119130134142149163173184197214221
step #13 = 5464644657500000011711019071641751109119130134142149163173184197214221226
step #14 = 5464644657500000011711019071641751109119130134142149163173184197214221226236
step #15 = 5464644657500000011711019071641751109119130134142149163173184197214221226236247
step #16 = 5464644657500000011711019071641751109119130134142149163173184197214221226236247260
step #17 = 5464644657500000011711019071641751109119130134142149163173184197214221226236247260268
step #18 = 5464644657500000011711019071641751109119130134142149163173184197214221226236247260268284
step #19 = 5464644657500000011711019071641751109119130134142149163173184197214221226236247260268284298
step #20 = 5464644657500000011711019071641751109119130134142149163173184197214221226236247260268284298317
step #21 = 5464644657500000011711019071641751109119130134142149163173184197214221226236247260268284298317328
step #22 = 5464644657500000011711019071641751109119130134142149163173184197214221226236247260268284298317328341
step #23 = 5464644657500000011711019071641751109119130134142149163173184197214221226236247260268284298317328341349
step #24 = 46464467000000117110190716417110911913013414214916317318419721422122623624726026828429831732834134936
step #25 = 66670000001171101907161711091191301312191631731819721221226236272602682829831732831393635
step #26 = 700000011711019071171109119130131219131731819721221222327202828298317328313933530
step #27 = 700000011711019071171109119130131219131731819721221222327202828298317328313933530249
step #28 = 700000011711019071171109119130131219131731819721221222327202828298317328313933530249264
step #29 = 000000111101901111091191301312191313181921221222322028282983132831393353024926426
step #30 = 000000111101901111091191301312191313181921221222322028282983132831393353024926426228
step #31 = 11111911119119131312191313181921221222322282829831328313933532492642622824
step #32 = 11111911119119131312191313181921221222322282829831328313933532492642622824246
step #33 = 11111911119119131312191313181921221222322282829831328313933532492642622824246258
step #34 = 11111911119119131312191313181921221222322282829831328313933532492642622824246258273
step #35 = 11111911119119131312191313181921221222322282829831328313933532492642622824246258273285
step #36 = 11111911119119131312191313181921221222322282829831328313933532492642622824246258273285300
step #37 = 11111911119119131312191313181921221222322282829831328313933532492642622824246258273285300303
step #38 = 11111911119119131312191313181921221222322282829831328313933532492642622824246258273285300303309
step #39 = 99933293389222222322282829833283393353249264262282424625827328530030330932
step #40 = 99933293389222222322282829833283393353249264262282424625827328530030330932303
step #41 = 3323382222223222828283328333353242642622824246258273285300303303230330
step #42 = 282222222228282828524264262282424625827285000020021
step #43 = 282222222228282828524264262282424625827285000020021171
step #44 = 282222222228282828524264262282424625827285000020021171180
step #45 = 282222222228282828524264262282424625827285000020021171180189
step #46 = 8888854646844658785000000117118018907
step #47 = 8888854646844658785000000117118018907164
step #48 = 8888854646844658785000000117118018907164175
step #49 = 5464644657500000011711019071641751
___________________________________________
Bravo and merci to Michael and Hans — both of you kill!
In case s/o is interested, here are "minimal representatives" of some more cycles I've found, and their length or size (number of elements in the cycle): 332 (size: 14072) ; 0999 (size: 624885) ; 3374 (size: 583792) ; 3933 (size: 10537) ; 083433 (size: 120621) ; 222227222772202078 (size: 1723) ; 5464644657500000011711019071641751 (size: 49, the one found by Hans).
RépondreSupprimer