Tiling squares with primes

 

Hello Math-Fun,
We first transform a prime number P into a rectangle (of height h and width w) by separating the digits of P in a proper way:

11 → h = 1 and w = 1
13 → h = 1 and w = 3
17 → h = 1 and w = 7

31 → h = 3 and w = 1
101 → h = 10 and w = 1
113 → h = 1 and w = 13 or
113 → h = 11 and w = 3. Etc.

We will try now to tile the successive squares (n x n) with distinct such “prime rectangles”:

1 x 1 = +---+
        | 11|
        +---+
2 x 2 impossible
3 x 3 = +---+---+---+
        |     13    |
        +---+---+---+
        |           |
        +     23    +
        |           |
        +---+---+---+
4 x 4 = +---+---+---+---+
        | 11|           |
        +---+           +
        |   |           |
        +   |     43    +
        | 31|           |
        +   |           +
        |   |           |
        +---+---+---+---+
5 x 5 impossible
6 x 6 = +---+---+---+---+---+---+
        |     13    |           |
        +---+---+---+     23    +
        |           |           |
        +           +---+---+---+
        |           |           |
        +           +           +
        |     53    |           |
        +           +     43    +
        |           |           |
        +           +           +
        |           |           |
        +---+---+---+---+---+---+
7 x 7 = +---+---+---+---+---+---+---+
        |     13    |   |           |
        +---+---+---+   +           +
        |           |   |           |
        +     23    +   +           +
        |           |   |           |
        +---+---+---+   +           +
        |           | 71|     73    |
        +           +   +           +
        |           |   |           |
        +     43    +   +           +
        |           |   |           |
        +           +   +           +
        |           |   |           |
        +---+---+---+---+---+---+---+

8 x 8 impossible?

Are there more “impossible to tile” squares (with distinct primes)?
Remember that the rectangle 4x3 is accepted as a tile but NOT the rectangle 3x4 (as 34 is not a prime and we don’t tilt rectangles).
Best,
É.

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Commentaires

Posts les plus consultés de ce blog

A square for three (chess)

Le tripalin se présente

Some strings au cinéma Galeries