The beam and the double-pan balance
Put the beam of a double-pan balance between any two successive terms of the hereunder sequence D.
D = 1,2,3,3,4,5,6,3,7,5,8,7,9,9,1,8,10,11,12,3,13,11,14,7,…
D = 1, 2, 3, 3, 4, 5, 6, 3, 7, 5, 8, 7, 9, 9, 1, 8, 10, 11, 12, 3, 13, 11, 14, 7, 15, 12, 16, 11, 1, 2, 17, 7, 18, 12, 19, 14, 20, 16, 1, 8, 21, 18, 22, 11, 23, 19, 1, 20, 24, 21, 25, 11, 26, 22, 27, 6, 1, 2, 1, 5, 28, 23, 1, 20, 29, 25, 30, 6, 31, 26, 32, 10, 33, 27, 34, 14, 1, 2, 1, 23, 35, 28, 36, 18, 37, 29, 1, 32, 38, 31, 39, 18, 1, 2, 40, 20, 41, 31, 42, 21, 43, 32, 1, 32, 44, 34, 45, 21, 46, 35, 1, 17, 1, 2, 1, 5, 1, 2, 1, 14, 47, 37, 48, 21, 1, 2, 49, 11, 50, 37, 51, 24, 52, 38, 1, 17, 53, 40, 54, 24, 55, 41, 1, 29, 56, 43, 57, 24, 58, 44, 1, 41, 1, 2, 1, 5, 1, 2, 59, 10, 60, 45, 61, 23, 62, 46, 1, 53, 63, 48, 64, 23, 1, 2, 65, 31, 66, 48, 67, 26, 68, 49, 1, 53, 1, 2, 1, 5, 69, 51, 1, 59, 70, 53, 71, 22, 72, 54, 1, 62, 73, 56, 74, 22, 1, 2, 75, 21, 76, 56, 77, 25, 78, 57, 1, 62, 79, 59, 80, 25, 1, 2, 1, 50, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 41, 81, 60, 82, 29, 83, 61, 1, 62, 1, 2,1, 5, 84, 63, 1, 32, 85, 65, 86, 25, 87, 66, 1, 71, 88, 68, 89, 25, 1, 2, 1, 50, 90, 69, 91, 29, 92, 70, 1, 71, 93, 72, 94, 29, 1, 2, 1, 86, 95, 73, 96, 33, 97, 74, 1, 71, 98, 76, 99, 33, 1, 2, 100, 23, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 101, 76, 1, 29, 102, 78, 103, 32, 104, 79, 1, 68, 105, 81, 106, 32, 1, 2, 107, 52, 108, 81, 109, 35, 110, 82, 1, 68, 1, 2, 1, 5, 111, 84, 1, 92, 112, 86, 113, 31, 114, 87, 1, 77, 115, 89, 116, 31, 1, 2, 117, 42, 1, 2, 1, 5, 1, 2, 1, 14, 118, 89, 119, 34, 1, 2, 120, 57, 121, 89, 122, 37, 123, 90, 1, 65, 124, 92, 125, 37, 1, 2, 126, 60, 127, 92, 128, 40, 129, 93, 1, 65, 1, 2, 1, 5, 130, 95, 1, 62, 131, 97, 132, 36, 133, 98, 1, 74, 134, 100, 135, 36, 1, 2, 136, 50, 137, 100, 138, 39, 139, 101, 1, 74, 1, 2, 1, 5, 1, 2, 140, 10, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 41, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 122, 141, 102, 142, 38, 143, 103, 1, 86, 144, 105, 145, 38, 1, 2, 146, 40, 1, 2, 1, 5, ...
Here is the sequence T where the weight on the right pan is always 3 times the weight on the left pan (thank you again, Carole!-)If we want to use the same idea to build the sequence U where the two pans have the same weight (no factor 2 or 3 to multiply the sum on the left-pan to get the sum on the right-pan), we have to put the beam after a(2) – NOT immediately after a(1) as above – and start weighting from there (indeed, 1+4=2+3)
U = 1, 4, 2, 3, 1, 3, 5, 1, 1, 1, 1, 5, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 7, 3, 8, 4, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 1, 5, 10, 6, 1, 7, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 6, 1, 9, 1, 1, 1, 9, 13, 7, 1, 11, 1, 1, 1, 13, 1, 1, 1, 1, 14, 8, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 9, 1, 11, 1, 1, 16, 2, 1, 1, 1, 1, 1, 1, 17, 1, 18, 8, 1, 13, 1, 1, 19, 3, 1, 1, 1, 1, 1, 1, 20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 21, 7, 1, 15, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 22, 8, 1, 17, 1, 1, 1, 21, 1, 1, 1, 1, 23, 9, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 10, 1, 1, 25, 11, 1, 15, 1, 1, 1, 25, 1, 1, 1, 1, 26, 12, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 13, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 14, 1, 13, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
We see that the 1s are quickly invading the sequence U.
Other variants imply to multiply the terms instead of adding them. See hereunder the beginning of the sequence DD where the terms on the right pan weight twice the terms on the left pan – when multiplied (instead of added):
DD = 1, 2, 4, 1, 8, 2, 1, 1, 16, 4, 1, 4, 1, 1, 1, 1, 32, 8, 1, 16, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 64, 16, 1, 64, 1, 1, 128, 2, 1, 1, 1, 1, 1, 1, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 512, 8, 1, 256, 1, 1, 1024, 4, 1, 1, 1, 1, 2048, 8, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4096, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8192, 32, 1, 64, 1, 1, 16384, 4, 1, 1, 1, 1, 32768, 32, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, ...
Again, an invasion of 1s – and the presence of nothing else but powers of 2.
The sequence TT shows the same idea with the right pan weighting three times the left pan (another invasion of 1s and the exclusive presence of powers of 3):
TT = 1, 3, 9, 1, 27, 3, 1, 1, 81, 9, 1, 9, 1, 1, 1, 1, 243, 27, 1, 81, 1, 1, 1, 81, 1, 1, 1, 1, 1, 1, 1, 1, 729, 81, 1, 729, 1, 1, 2187, 3, 1, 1, 1, 1, 1, 1, 1, 6561, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19683, 27, 1, 6561, 1, 1, 59049, 9, 1, 1, 1, 1, 177147, 27, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
The hereunder sequence UU shows the same idea where the two pans are balanced (indeed, 2 = 2, then 2*2=4*1 then 2*2*4=1*8*2, etc.):
UU = 2, 2, 4, 1, 8, 2, 1, 1, 16, 4, 1, 4, 1, 1, 1, 1, 32, 8, 1, 16, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 64, 16, 1, 64, 1, 1, 128, 2, 1, 1, 1, 1, 1, 1, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 512, 8, 1, 256, 1, 1, 1024, 4, 1, 1, 1, 1, 2048, 8, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4096, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8192, 32, 1, 64, 1, 1, 16384, 4, 1, 1, 1, 1, 32768, 32, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 65536, 64, 1, 64, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 131072, 128, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 262144, 256, 1, 1024, 1, 1, 1, 4096, 1, 1, 1, 1, ...
More variants to come soon (and submissions to the OEIS).
Commentaires
Enregistrer un commentaire