Another brick (in the wall)

Now we would like to make bricks (to throw them in Putin's face?) By superimposing two numbers in a «correct» way.

This is for instance a 2-integer brick we accept:

1291951
9371733

Why? Because, when we read vertically, we encounter only prime numbers. They are (left to right):

19, 23, 97, 11, 97, 53, 13.

Note that neither 1291951, nor 9371733 are primes – we are only interested in vertical 2-digit (sometimes 1-digit) primes.

Here are four bricks we accept – and four we don’t:

We accept:
  a    b    c       d 
 14   17  513  23567898
391  213   37     13973

We reject:
 e    f    g       h
 14   17  413  235678980
191  913   17     139735

Why?

a: the leftmost vertical integer is seen here as the prime “3” – the next two are 19 and 41;
b: the leftmost vertical integer is seen as the prime “2” – the next two are 11 and 73;
c: the leftmost vertical integer is seen as the prime “5” – the next two are 13 and 37;
d: the successive correct vertical primes are 2, 3, 5, 61, 73, 89, 97 and 83;
e: the leftmost vertical integer “1” is not a prime;
f: the leftmost vertical integer “9” is not a prime;
g: the leftmost vertical integer “4” is not a prime;
h: no brick can bear the digit “0” (zero).

How about a brick-sequence?

Definition: lexicographically earliest sequence of distinct positive integers such that a(n) written on top of a(n+1) forms an accepted 2-integer brick.

S = 1,3,7,9,27,31,11,71,91,73,17,19,37,13,77,33,211,39,217,93,271,97,273,311,79,237,313,111,113,117,119,137,171,131,173,191,133,317,…

February 28th 2022 update
Carole D. has corrected my start and computed this new one:
S = 1, 3, 7, 9, 27, 31, 11, 13, 17, 19, 37, 71, 33, 77, 39, 217, 73, 91, 79, 97, 271, 93, 277, 99, 377, 111, 113, 117, 119, 137, 171, 131, 173, 191, 177, 133, 311, 139, 317, 179, 197, 371, 193, 771, 199, 777, 313, 711, 319, 717, 331, 713, 337, 719, 397, 773, 391, 779, 917, 731, 373, 737, 379, 797, 971, 733, 911, 739, 977, 791, 973, 2711, 333, 2111, 339, 2117, 393, 2171, 399, 2177, 793, 2371, 799, 2377, 3111, 913, 2717, 919, 2737, 979, 2797, 3171, 931, 2713, 937, 2719, 997, 2771, 933, 2777, 939, 3717, 991, 2773, 3117, 993, 3771, 999, 3777, 1111, 1113, 1117, 1119, 1137, 1171, 1131, 1173, 1191, 1177, 1133, 1311, 1139, 1317, 1179, 1197, 1371, 1193, 1377, 1199, 1777, 1313, 1711, 1319, 1717, 1331, 1713, 1337, 1719, 1397, 1771, 1333, 3177, 1339, 7117, 1373, 1731, 1379, 1737, 1911, 1733, 1917, 1739, 1977, 1791, 1971, 1793, 3371, 1797, 1973, 3711, 1391, 1773, 1931, 1779, 1937, 3713, 1991, 3773, 1997, 3779, 7137, 1913, 3731, 1919, 3737, 1979, 3797, 7171, 1393, 7177, 1399, 7777, 1933, 7711, 1939, 7717, 1993, 7771, 1999, 9777, 7111, 1799, 3377, 7113, 3131, 7119, 3137, 7173, 3191, 7179,...

Carole asks: "What about 3-layer bricks?"

T = 1, 2, 7, 21, 9, 3, 27, 33, 39, 17, 11, 239, 13, 37, 19, 77, 31, 99, 71, 79, 231, 91, 73, 211, 93, 97, 213, 313, 331, 111, 113, 337, 119, 117, 2331, 179, 131, 339, 171, 139, 333, 177, 133, 393, 771, 311, 993, 711, 191, 913, 197, 173, 319, 797, 317, 2313, 733, 371, 391, 773, 377, 933, 739, 717, 2311, 939, 713, 137, 919, 737, 777, 2333, 399, 3177, 1111, 1399, 193, 1117, 1313, 3133, 397, 779, 917, 791, 199, 911, 719, 731, 379, 931, 799, 2171, 971, 3333, 1731, 373, 1331, 1131, 3113, 1311, 937, 1713, 1113, 3931, 793, 1171, 1911, 3193, 977, 973, 2133, 991, 3171, 1173, 1337, 999, 1777, 1177, 3933, 1133, 1917, 979, 1137, 1191, 3379, 1119, 1197, 3311, 1199, 1139, 3371, 1739, 997, 1771, 1179, 3937, 1391, 1779, 3313, 1397, 1193, 3119, 1317, 1737, 3373, 1333, 1791, 3377, 1319, 1797, 3317, 1393, 1719, 3397, 1371, 3179, 1339, 1931, 3711, 1733, 1377, 3339, 7137, 3111, 3319, 1933, 1717, 3139, 1977, 1937, 3733, 1773, 3331, 1991, 3773, 1711, 3391, 1373, 3117, 1793, 1379, 3917, 7791, 3199, 3911, 1799, 3131, 1971, 1993, 3771, 7111, 3993, 3137, 1973, 1939, 3197, 7171, 9319, 7191, 7119,...

Explanation:
1,2,7 are ok because 127 is prime;
2, 7, 21 are ok because 271 and 2 are prime numbers;
7, 21, 9 are ok because 719 and 2 are prime numbers;
....
1739, 997, 1771 are ok because 971, 397, 797, 11 are prime numbers:

1739 
 997 
1771 
 
Perfect, Carole, thanks! This will be submitted soon to the OEIS!






 


 


Commentaires

Posts les plus consultés de ce blog

Confingame, 3e étape

Some strings au cinéma Galeries

Square my chunks and add