Tapered peaks

Sequence starting with a(1) = 2 and always extended with the product "n-th digit * n-th term". When the product is = 0, we don’t extend the sequence with 0 but with the smallest integer not yet present.

S = 2, 4, 16, 16, 96, 96, 576, 5184, 31104, 279936, 1679616, 8398080, 58786560, 352719360, 1763596800, 1763596800, 14108774400, 56435097600, 169305292800, 169305292800, 169305292800, 1, 4, 8, 56, 504, 4536, 13608, 81648, 81648, 489888, 3429216, 30862944, 185177664, 185177664, 1111065984, 8888527872, ...

(a1) = 2

2 * 2 = 4 = a(2)
4 * 4 = 16 = a(3), etc.
1 * 16 = 16
6 * 16 = 96
1 * 96 = 96
6 * 96 = 576
9 * 576 = 5184
6 * 5184 = 31104
9 * 31104 = 279936
6 * 279936 = 1679616
5 * 1679616 = 8398080
7 * 8398080 = 58786560
6 * 58786560 = 352719360
5 * 352719360 = 1763596800
1 * 1763596800 = 1763596800
8 * 1763596800 = 14108774400
4 * 14108774400 = 56435097600
3 * 56435097600 = 169305292800
1 * 169305292800 = 169305292800
1 * 169305292800 = 169305292800
0 * 169305292800 = 0 = 1
4 * 1 = 4
2 * 4 = 8
7 * 8 = 56
9 * 56 = 504
9 * 504 = 4536
3 * 4536 = 13608
6 * 13608 = 81648
1 * 81648 = 81648
6 * 81648 = 489888
7 * 489888 = 3429216
9 * 3429216 = 30862944
6 * 30862944 = 185177664
1 * 185177664 = 185177664
6 * 185177664 = 1111065984
8 * 1111065984 = 8888527872
3 * 8888527872 = 26665583616
9 *26665583616  = 239990252544
8 * 239990252544 = 1919922020352
0 * 1919922020352 = 0 = 3
8 * 3 = 24
0 * 24 = 0 = 5
5 * 5 = 25
8 * 25 = 200
7 * 200 = 1400
8 * 1400 = 11200
6 * 11200 = 67200
5 * 67200 = 336000
6 * 336000 = 2016000
0 * 2016000 = 0 = 6
3 * 6 = 18
5 * 18 = 90
2 * 90 = 180
7 * 180 = 1260
1 * 1260 = 1260
9 * 1260 = 11340
3 * 11340 = 34020
6 * 34020 = 204120
0 *204120 = 0 = 7
1 * 7 = 7
7 * 7 = 49
6 * 49 = 294
...

[Thank you for your remarks, Hans – I hope this is correct now! – yes, Eric, and old hat...]






 
 
 
 
 
 


Commentaires

Posts les plus consultés de ce blog

A square for three (chess)

Le tripalin se présente

Some strings au cinéma Galeries