Tapered peaks
Sequence starting with a(1) = 2 and always extended with the product "n-th digit * n-th term". When the product is = 0, we don’t extend the sequence with 0 but with the smallest integer not yet present.
S = 2, 4, 16, 16, 96, 96, 576, 5184, 31104, 279936, 1679616, 8398080, 58786560, 352719360, 1763596800, 1763596800, 14108774400, 56435097600, 169305292800, 169305292800, 169305292800, 1, 4, 8, 56, 504, 4536, 13608, 81648, 81648, 489888, 3429216, 30862944, 185177664, 185177664, 1111065984, 8888527872, ...
(a1) = 2
2 * 2 = 4 = a(2)
4
* 4 = 16 = a(3), etc.
1 * 16 = 16
6 * 16 = 96
1
* 96 = 96
6
* 96 = 576
9 * 576 = 5184
6 * 5184 = 31104
9
* 31104 = 279936
6
* 279936 = 1679616
5 * 1679616 = 8398080
7 * 8398080 = 58786560
6 * 58786560 = 352719360
5
* 352719360 = 1763596800
1
* 1763596800 = 1763596800
8
* 1763596800 = 14108774400
4
* 14108774400 = 56435097600
3 * 56435097600 = 169305292800
1 * 169305292800 = 169305292800
1 * 169305292800 = 169305292800
0 * 169305292800 = 0 = 1
4 * 1 = 4
2
* 4 = 8
7
* 8 = 56
9
* 56 = 504
9
* 504 = 4536
3
* 4536 = 13608
6
* 13608 = 81648
1 * 81648 = 81648
6 * 81648 = 489888
7 * 489888 = 3429216
9 * 3429216 = 30862944
6 * 30862944 = 185177664
1 * 185177664 = 185177664
6 * 185177664 = 1111065984
8
* 1111065984 = 8888527872
3
* 8888527872 = 26665583616
9
*26665583616 = 239990252544
8
* 239990252544 = 1919922020352
0
* 1919922020352 = 0 = 3
8
* 3 = 24
0
* 24 = 0 = 5
5 * 5 = 25
8 * 25 = 200
7 * 200 = 1400
8 * 1400 = 11200
6 * 11200 = 67200
5 * 67200 = 336000
6 * 336000 = 2016000
0 * 2016000 = 0 = 6
3
* 6 = 18
5
* 18 = 90
2
* 90 = 180
7
* 180 = 1260
1
* 1260 = 1260
9
* 1260 = 11340
3
* 11340 = 34020
6
* 34020 = 204120
0
*204120 = 0 = 7
1 * 7 = 7
7 * 7 = 49
6 * 49 = 294
...
Commentaires
Enregistrer un commentaire