Pseudo-loops with cubes


According to the OEIS, the list L of the first 26 cubes is (https://oeis.org/A000578/b000578.txt):
1st = 0
2nd = 1
3rd = 8
4th = 27
5th = 64
6th = 125
7th = 216
8th = 343
9th = 512
10th = 729
11th = 1000
12th = 1331
13th = 1728
14th = 2197
15th = 2744
16th = 3375
17th = 4096
18th = 4913
19th = 5832
20th = 6859
21st = 8000
22nd = 9261
23rd = 10648
24th = 12167
25th = 13824
26th = 15625

Idea#1
We start the sequence S with a(1) = 1;
we decide that k is the largest cube that can fit into a(n);
we then concatenate k and a(n) – k and iterate.
 
S = 1, 10, 82, 6418, 5832586, 5832000586, 5832000000586, 5832000000000586, ... 

Explanation
The largest cube that can fit into 1 is 1; 1-1 = 0; the concatenation forms 10;
the largest cube that can fit into 10 is 8; 10-8 = 2; the concatenation forms 82;    
the largest cube that can fit into 82 is 64; 82-64 = 18; the concatenation forms 6418;
the largest cube that can fit into 6418 is 5832; 6418-5832 = 586; the concatenation forms 5832586;
the largest cube that can fit into 5832586 is 5832000; 5832586-5832000 = 586; the
concatenation forms 5832000586;
this pattern goes on to infinity.
 
Starting the sequence T with a(1) = 2 would produce:
T = 2, 11, 83, 6419, 5832587, 5832000587, 5832000000587, 5832000000000587, ...
Starting the sequence U with a(1) = 3 would produce:
U = 3, 12, 84, 6420, 5832588, 5832000588, 5832000000588, 5832000000000588, ...
Starting the sequence V with a(1) = 7 would produce:
V = 7, 16, 88, 6424, 5832592, 5832000592, 5832000000592, 5832000000000592,...
Starting the sequence W with a(1) = 8 would produce:
W = 8, 80, 6416, 5832584, 5832000584, 5832000000584, 5832000000000584, ...
Starting the sequence X with a(1) = 26 would produce:
X = 26, 818, 72989, 689214068, 688465387748681, 88300000000748681, ...
Starting the sequence Y with a(1) = 27 would produce:
Y = 27, 270, 21654, 196831971, 196122941709030, 196122941000000709030, ...
 
Question
Will a(1) always end in such an infinite pseudo-loop, no matter its value?
____________________
Next morning update#1
Jean-Marc Falcoz is affirmative: yes, all starts seem to enter into an infinite pseudo-loop.
[English Google-translation after the French original version]

JMF
> Je te joins une liste de départs entre 1 et 9 pour lesquels, même avec seulement 15 itérations, cest évident. Avec des départs de suite aux alentours de 35000, cest la même chose.
[I am attaching a list of departures between 1 and 9 for which, even with only 15 iterations, it is obvious. With consecutive departures around 35,000, it's the same thing.]

Idea #1 (starts from 1 to 9)
{1,10,82,6418,5832586,5832000586,5832000000586,5832000000000586,5832000000000000586,5832000000000000000586,5832000000000000000000586,5832000000000000000000000586,5832000000000000000000000000586,5832000000000000000000000000000586,5832000000000000000000000000000000586,5832000000000000000000000000000000000586}

{2,11,83,6419,5832587,5832000587,5832000000587,5832000000000587,5832000000000000587,5832000000000000000587,5832000000000000000000587,5832000000000000000000000587,5832000000000000000000000000587,5832000000000000000000000000000587,5832000000000000000000000000000000587,5832000000000000000000000000000000000587}

{3,12,84,6420,5832588,5832000588,5832000000588,5832000000000588,5832000000000000588,5832000000000000000588,5832000000000000000000588,5832000000000000000000000588,5832000000000000000000000000588,5832000000000000000000000000000588,5832000000000000000000000000000000588,5832000000000000000000000000000000000588}

{4,13,85,6421,5832589,5832000589,5832000000589,5832000000000589,5832000000000000589,5832000000000000000589,5832000000000000000000589,5832000000000000000000000589,5832000000000000000000000000589,5832000000000000000000000000000589,5832000000000000000000000000000000589,5832000000000000000000000000000000000589}

{5,14,86,6422,5832590,5832000590,5832000000590,5832000000000590,5832000000000000590,5832000000000000000590,5832000000000000000000590,5832000000000000000000000590,5832000000000000000000000000590,5832000000000000000000000000000590,5832000000000000000000000000000000590,5832000000000000000000000000000000000590}

{6,15,87,6423,5832591,5832000591,5832000000591,5832000000000591,5832000000000000591,5832000000000000000591,5832000000000000000000591,5832000000000000000000000591,5832000000000000000000000000591,5832000000000000000000000000000591,5832000000000000000000000000000000591,5832000000000000000000000000000000000591}

{7,16,88,6424,5832592,5832000592,5832000000592,5832000000000592,5832000000000000592,5832000000000000000592,5832000000000000000000592,5832000000000000000000000592,5832000000000000000000000000592,5832000000000000000000000000000592,5832000000000000000000000000000000592,5832000000000000000000000000000000000592}

{8,80,6416,5832584,5832000584,5832000000584,5832000000000584,5832000000000000584,5832000000000000000584,5832000000000000000000584,5832000000000000000000000584,5832000000000000000000000000584,5832000000000000000000000000000584,5832000000000000000000000000000000584,5832000000000000000000000000000000000584,5832000000000000000000000000000000000000584}

{9,81,6417,5832585,5832000585,5832000000585,5832000000000585,5832000000000000585,5832000000000000000585,5832000000000000000000585,5832000000000000000000000585,5832000000000000000000000000585,5832000000000000000000000000000585,5832000000000000000000000000000000585,5832000000000000000000000000000000000585,5832000000000000000000000000000000000000585}

Idea #1 (starts from 35672 to 35677)
{35672,327682904,327082769600135,327082769000000600135,327082769000000000000600135,327082769000000000000000000600135,327082769000000000000000000000000600135,327082769000000000000000000000000000000600135,327082769000000000000000000000000000000000000600135,327082769000000000000000000000000000000000000000000600135,327082769000000000000000000000000000000000000000000000000600135,327082769000000000000000000000000000000000000000000000000000000600135,327082769000000000000000000000000000000000000000000000000000000000000600135,327082769000000000000000000000000000000000000000000000000000000000000000000600135,327082769000000000000000000000000000000000000000000000000000000000000000000000000600135,327082769000000000000000000000000000000000000000000000000000000000000000000000000000000600135}
{35673,327682905,327082769600136,327082769000000600136,327082769000000000000600136,327082769000000000000000000600136,327082769000000000000000000000000600136,327082769000000000000000000000000000000600136,327082769000000000000000000000000000000000000600136,327082769000000000000000000000000000000000000000000600136,327082769000000000000000000000000000000000000000000000000600136,327082769000000000000000000000000000000000000000000000000000000600136,327082769000000000000000000000000000000000000000000000000000000000000600136,327082769000000000000000000000000000000000000000000000000000000000000000000600136,327082769000000000000000000000000000000000000000000000000000000000000000000000000600136,327082769000000000000000000000000000000000000000000000000000000000000000000000000000000600136}
{35674,327682906,327082769600137,327082769000000600137,327082769000000000000600137,327082769000000000000000000600137,327082769000000000000000000000000600137,327082769000000000000000000000000000000600137,327082769000000000000000000000000000000000000600137,327082769000000000000000000000000000000000000000000600137,327082769000000000000000000000000000000000000000000000000600137,327082769000000000000000000000000000000000000000000000000000000600137,327082769000000000000000000000000000000000000000000000000000000000000600137,327082769000000000000000000000000000000000000000000000000000000000000000000600137,327082769000000000000000000000000000000000000000000000000000000000000000000000000600137,327082769000000000000000000000000000000000000000000000000000000000000000000000000000000600137}
{35675,327682907,327082769600138,327082769000000600138,327082769000000000000600138,327082769000000000000000000600138,327082769000000000000000000000000600138,327082769000000000000000000000000000000600138,327082769000000000000000000000000000000000000600138,327082769000000000000000000000000000000000000000000600138,327082769000000000000000000000000000000000000000000000000600138,327082769000000000000000000000000000000000000000000000000000000600138,327082769000000000000000000000000000000000000000000000000000000000000600138,327082769000000000000000000000000000000000000000000000000000000000000000000600138,327082769000000000000000000000000000000000000000000000000000000000000000000000000600138,327082769000000000000000000000000000000000000000000000000000000000000000000000000000000600138}
{35676,327682908,327082769600139,327082769000000600139,327082769000000000000600139,327082769000000000000000000600139,327082769000000000000000000000000600139,327082769000000000000000000000000000000600139,327082769000000000000000000000000000000000000600139,327082769000000000000000000000000000000000000000000600139,327082769000000000000000000000000000000000000000000000000600139,327082769000000000000000000000000000000000000000000000000000000600139,327082769000000000000000000000000000000000000000000000000000000000000600139,327082769000000000000000000000000000000000000000000000000000000000000000000600139,327082769000000000000000000000000000000000000000000000000000000000000000000000000600139,327082769000000000000000000000000000000000000000000000000000000000000000000000000000000600139}
{35677,327682909,327082769600140,327082769000000600140,327082769000000000000600140,327082769000000000000000000600140,327082769000000000000000000000000600140,327082769000000000000000000000000000000600140,327082769000000000000000000000000000000000000600140,327082769000000000000000000000000000000000000000000600140,327082769000000000000000000000000000000000000000000000000600140,327082769000000000000000000000000000000000000000000000000000000600140,327082769000000000000000000000000000000000000000000000000000000000000600140,327082769000000000000000000000000000000000000000000000000000000000000000000600140,327082769000000000000000000000000000000000000000000000000000000000000000000000000600140,327082769000000000000000000000000000000000000000000000000000000000000000000000000000000600140}
(Dall-e creation)
Idea#2
We start the sequence A with a(1) = 1;
we decide that k is the index (in the above list L) of the largest cube q that can fit into a(n);
we then concatenate k and a(n) - q and iterate.

A = 1, 20312796106711671116723519, ...   

Explanation
The largest cube that can fit into a(1) = 1 is 1 which is the 2nd cube of the above list;
as a(1) - 1 = 0 we get the concatenation 20;
the largest cube that can fit into a(2) = 20 is 8 which is the 3rd cube of the above list;
as a(2) - 8 = 12 we get the concatenation 312;
the largest cube that can fit into a(3) = 312 is 216 which is the 7th cube of the above list;
as a(3) - 216 = 96 we get the concatenation 796;
the largest cube that can fit into a(4) = 796 is 729 which is the 10th cube of the above list;
as a(4) - 729 = 67 we get the concatenation 1067;
the largest cube that can fit into a(5) = 1067 is 1000 which is the 11th cube of the above list;
as a(5) - 1000 = 67 we get the concatenation 1167;
the largest cube that can fit into a(6) = 1167 is 1000 which is the 11th cube of the above list;
as a(6) - 1000 = 167 we get the concatenation 11167;
the largest cube that can fit into a(7) = 11167 is 10648 which is the 23rd cube of the above list;
as a(7) - 10648 = 519 we get the concatenation 23519; etc.
 
Question
Will the sequence A also enter in a pseudo-loop at some point?
____________________
Update#2 (answer by JMF to the above question)
Idea#2
Pour la version #2, je pense que cela ne boucle pas.
En partant de 1, après 2000 itérations, voici ce quon obtient.
[For the version #2, I think it doesn't loop.
Starting from 1, after 2000 iterations, here is what we obtain]
A = {1, 20, 312, 796, 1067, 1167, 11167, 23519, 291567, 674071, 8815568, 20773752, 275202928, 651577928, 8672116032, 20556462568, 27408153149, 30161124774, 311322823846, 677870604413, 8785108970109, 206341213993972, 5909210434503401, 18079184927464401, 262458181752706408, 640256712888125033, 861890186679386664, 9516652010718343720, 21191497080987373928, 276728521590211011624, 651655481269383567247, 8669739199239371111975, 20543228760944509673892, 27387743859772418351404, 301429272234369907552628, 6704943812787134271656175, 18856672134973851095208175, 266167495126599385486618391, 643257719239919371305468159, 8632335991303968100904424967, 2051364232506200644660886576, 12706158244625901658416439809, 233348360210967314447953109008, 615651465859387827286018757615,  (...),

 20536156111248574886172542737318355620260110903113883155923066395253076274680881991065894622325433633032304681829142940606481511637887472066719638556144595671050176826349643002710308072428215153920602934477882263195272116553894625408160058774573447022731698915297435496426946654802053291904134384771943850399663081485576805422499914456757887521260532588830632937973469912312944865489856703879295027882292395743070040010678340831743106328049068772266759571094224861189052158602907990377771450437521613548424356049197551069161953699579076119548795327227693161121358534141739166702915103026671323879918521265553572455572242266910459913975673278084066906901605814837426611915798443677958661463212782355506871866112002207863102088893765388110378475299532919718033344962572991360122408568146960619568417074384516217679522400238062497263280363659900131928686426849714220792150503609062040859679889277354704705132924170981715516019670561540189287898626333370351148689090042032162763996547586601564710722710293240450922419660119699618847769352067311004728167584482431424962659882272628516010231643386191696 (...),

273845989920425374179981079221240078736643378013458685058936045670132862620785281630134044572786192758400518780877209829810567100445408815041805558953275874225169955237897887746344761839520265450467879962867461123398840418124064526893495347523453283461943846967382774914531023904519528322830477856497008609237210418635941406917447793902707230095921135712058698606785171569088105127445843091931790792070354908054711709913797277626544234262763675634151440656013840838605528771094800986976184404847437553044101114002599409676419688322103156596298683240576669062053833817296589968389375511247611707351922508392932099626451635469802013536421537665637838232039259966610702874666133761298787975722140195502532029353708827594967350550551388529793523667188698725267774533714784961696264450945328562636726626941346319760554033595320980620100396316340093322084881100964573986351109358691274297070607225719439354591745824935416903527543299856886543646263984546978977624487763669990307477171803110795024474738575130464215639864230949172849197394338619054432708541674176203008052612855704174155911448984723693392}

Giorgos Kalogeropoulos has confirmed the results of Jean-Marc Falcoz

GK
Here are the first 100 terms (of the Idea #2): 
1,20,312,796,1067,1167,11167,23519,291567,674071,8815568,20773752,275202928,651577928,8672116032,20556462568,27408153149,30161124774,311322823846,677870604413,8785108970109,206341213993972,5909210434503401,18079184927464401,262458181752706408,640256712888125033,861890186679386664,9516652010718343720,21191497080987373928,276728521590211011624,651655481269383567247,8669739199239371111975,20543228760944509673892,27387743859772418351404,301429272234369907552628,6704943812787134271656175,18856672134973851095208175,266167495126599385486618391,643257719239919371305468159,8632335991303968100904424967,2051364232506200644660886576,12706158244625901658416439809,233348360210967314447953109008,615651465859387827286018757615,8507036692103700078306911870244,20413905594696576986178390307387,27330151178411788378981151725154,301217831742418015358322425326437,670337567889768077630362181991034,8751809445217533828439467469175183,2060784682795496290869192468954231,12725578644114152598400685154970231,23346718474287250794467846286389210,28580859311542140499858123903023666,305744340946169246814071179373615041,6736786888931080628582034871293386753,18886476229125431829371529455271742722,26630765197551147689851224314433669658,29862618204558727669466919001666732994,310248216755221890279848882208832347843,676970532079041147191618135251006018774,878058102640178932244645715571262018774,9575785700476194092860808707375467346899,21235287218608899494744094261209485052356,276918973544941043443858452693719024191199,651804825048279282047339444524392115319223,8670401131598514222361280153823704512635319,20543750411104530940212286028192207263862135,27387974197295915345389696096385819596820223,301430113225703219630189026670512924802171815,670495003043075420363015171280304821333362591,8752494540107241581611674138474369548475559524,20608384543738306496783662879376514643818157735,274166665361913112203750288542100378753542660735,649638193409434071855409551556226637375241980516,866078351912100571794590901187065439853632172452,9532037182527830208466485242059598565650925428663,21202898902361672849572800177945648983167693313952,276778115187959721586063401358268236974566363030341,651694290033765633574586305044860659726787381494013,8669910986359509415694933641082539814288878706224656,20543363285178230999291462004669136154812772158062544,273878021634450010154849584738655301521804847486711815,649410132820730918605115652707912927967172166328706602,86597699218152645961733061235496770255172452549042690,442420712861801448235648066636087282663442251730701067,761982768663214067585236712742445518046328677241861571,913373450234786618365580339004533505954973541268314458,9702480855632401502281683717457218950247940745591286509,21328530361399476346319357615739057494762075810376201372,277323694460933623318685307903364397510625011612045122204,65212221107084437173174280840564496996449047095162236508,402509681455507330746618844629339758331438757609665299892,7383440457431505363157940765000335174658460244405044201964,19472404936598413169430684977224223083181028225988437924332,269033604774352715271580769328268262532533165590884276804756,645558360940844763389643605340473582068818321420752338000003,8642615060531530943916548841994797456266795333161950800584331,20521781378424265453248192993019482838704134600091958169381040,273782080171082026256172600975866992125329410874902078790849665,649334292933015844914985947257715586162268457273293673524093168.

____________________

Merci beaucoup Jean-Marc and Giorgos for those massive and beautiful numbers!
(mais Dieu sait pourquoi la version #1 entre systématiquement dans une pseudo-loop ?!)
[but God knows why the version #1 does systematically enter into a pseudo-loop?!)
____________________
Late update #3
Giorgos K.
>> but God knows why the version #1 ...
In your main example you state: "... concatenate k and a(n) – k and iterate"
Let's also define g^3 = k. Since k is a perfect cube, g is the cubic root of k which is an integer.
We can find a math formula for the concatenation of k and a(n) – k:
k is  the floor of cubic root of n -> k=floor(n^(1/3))^3 and g=floor(n^(1/3))
conc(n) = k (10^floor(log10(n-k)+1) -1) + n

Let's see an example...
for n=2 we have the following steps

step ->  g -> k             -> conc(n)
1->      1 -> 1             -> 11
2->      2 -> 8             -> 83
3->      4 -> 64            -> 6419
4->     18 -> 5832          -> 5832587
5->    180 -> 5832000       -> 5832000587
6->   1800 -> 5832000000    -> 5832000000587
7->  18000 -> 5832000000000 -> 5832000000000587

for n=3430 we have

1-> 15     -> 3375              -> 337555
2-> 69     -> 328509            -> 3285099046
3-> 1486   -> 3281379256        -> 32813792563719790
4-> 320148 -> 32813486631081792 -> 32813486631081792305932637998
5-> 3201480000
    -> 32813486631081792000000000000
    -> 32813486631081792000000000000305932637998
6-> 32014800000000
    -> 32813486631081792000000000000000000000000
    -> 32813486631081792000000000000000000000000305932637998
7-> 320148000000000000
    -> 32813486631081792000000000000000000000000000000000000
    -> 32813486631081792000000000000000000000000000000000000305932637998

We see that when g becomes a multiple of 10 we have the beginning of the loop.
So, can we find more steps? Can we delay g to become a multiple of 10?
A key number is n = 35947
For 35947 I will only display g because the other numbers become really massive

step -> g
 1 -> 33
 2 -> 153
 3 -> 7101
 4 -> 
3295992
 5 -> 71009995028
 6 -> 3295991999968637484
 7 -> 7100999502799999999411777527165
 8 -> 3295991999968637483999999999999799629599274475136506
 9 ->
152986396627314784230928702562010852256091074332191360779455972328809471495295113233814
10 ->
710099950279999999941177752716499999999999999999999870212146323353281413060193308360313537897108587880027917179248547920072903345883937815964329
11 ->
329599199996863748399999999999979962959927447513650599999999999999999999999999999999999375778635863834198793694511014464563792083304748930726970995944373254670346474581218524966034673812333397515433709133037976878166239674430860351841650503
12 ->
1529863966273147842309287025620108522560910743321913607794559723288094714952951132338139999999999999999999999999999999999999999999999999999999999862390487487657231407387065186476250513113128412438327967555511338799036721473953151011986951325837333796934023322118297773762870483118655860126143318153015177779579726826078927358895886969623993380865030096499385476788481307898698210471859555072588711633

We see that after 12 steps we still do not have g divisible by 10.
In fact we need 20 steps to find such a g
[Because the numbers are very big, I will now display only the last 10 digits of g for the first 24 steps]

 1 -> 33
 2 -> 153
 3 -> 7101
 4 -> 
3295992
 5 -> 
1009995028
 6 -> 
9968637484
 7 -> 
1777527165
 8 -> 
4475136506
 9 -> 
5113233814
10 -> 
7815964329
11 -> 
1841650503
12 -> 
2588711633
13 -> 
2409950498
14 -> 
2257697481
15 -> 
4041182248
16 -> 
7427602888
17 -> 
4349477866
18 -> 
6933425789
19 -> 
5062525736
20 -> 
1743438170 -> in this step k is divisible by 10
21 -> 603288493
22 -> 
8752933169
23 -> 
1733572718
24 -> 
3173042015


To our surprise, g in the 21st step is not divisible by 10.
Why is that happening?
Does this mean we do not have a loop?
____________________

ÉA
Many thanks for this interesting post, Giorgos!
The mystery thickens!
(Dall-e creation)


Commentaires

  1. Remark: For some starting values n we have the same with x = (10^k a)^3 + b and b having 3k digits, for some k > 1. For example, for n=18,...,36 we have this with k=2 (i.e., b with 6 digits), and for n=343, ..., 352 we have this with k=4 (i.e., b with 12 digits). The next record length seems to be (k, a)=(29, 11839996869999998391302366620983441364679069) for n = 1738 (I omit the 87-digit b value...), then (k,a)=(34, 1289859939972326508999999999999590090162006844186309) for n=2197.
    It is interesting to notice the long substrings of '9's in the middle of the a-value in the last 2 examples. This does not occur for the earlier examples. It would be nice if someone could give a simple explanation for this pattern.

    RépondreSupprimer
  2. Another observation: for some consecutive starting values (that "belong to the same cube") as n=18,...,26 and n=27,...,36 and n=343,... etc, each term of the sequence is exactly one more than the corresponding term of the previous sequence. (It's easy to see from the definition of the sequence why and how this happens, a bit less simple to state the precise conditions.)
    If that's the case, then the sequenes reach the "pseudo-loop" at the same iteration and with the same (k, a)-values, and a b-value that just differs by 1 as all other sequence terms. (For example:
    for 18 <= x(0) = n <= 26, we have x(3+k) = (883 * 100^k)^3 + 748673+(n-18) for all k>=1 ;
    for 27 <= x(0) = n <= 36, we have x(3+k) = (581 * 100^k)^3 + 709030+(n-27) for all k>=1, etc.)

    RépondreSupprimer

Enregistrer un commentaire

Posts les plus consultés de ce blog

Beautés ?

Underline, reproduce

Le tripalin se présente