Cumulative sums (and products)

Antoni Tapiès, Linia discontinua, 1967

From Wolfram MathWorld: « A cumulative sum is a sequence of partial sums of a given sequence. For example, the cumulative sums of the sequence {a, b, c, ...} are a, a+b, a+b+c, ... »

We want to build here the lexicographically earliest permutation P of the integers > 0 such that the cumultive sums Q reproduce P digit by digit. Are both P and Q correct?

The first 50 terms of P (computed by hand) seem to be:

P = 91, 10, 1, 102, 20, 4, 2, 24, 22, 8, 230, 25, 42, 7, 6, 28, 45, 14, 5, 3, 9, 58, 15, 88, 59, 46, 226, 66, 76, 81, 68, 689, 69, 87, 56, 77, 18, 599, 189, 64, 11, 90, 12, 561, 33, 21, 41, 13, 148, 2170, ...
P will be submitted soon to the OEIS.
_________________________________________________________________

The variant with the cumulative products M (instead of the cumulative sums P) is fun to explore:
The first 79  terms of M (also computed by hand) seem to be:

M = 1, 11, 2, 25, 50, 27, 500, 7, 4, 2500, 3, 71, 250000, 259, 8, 750000, 10, 39, 5000000, 2598, 7500000000, 77, 9, 6, 2500000000, 5, 53, 533, 75000000001, 38, 383, 43, 75000000000000, 35, 84, 13, 103, 12, 5000000000000, 28, 67, 30, 48, 25000000000000000, 21, 504, 78, 61, 87, 50000000000000000000, 2150, 47, 86, 18, 7500000000000000000000, 83, 868, 66, 613, 12500000000000000000000, 41, 93, 433, 306, 56, 2500000000000000000000000000, 108, 94, 539, 730, 44, 937, 5000000000000000000000000000, 81, 70, 90, 479, 783, 703, 12500000000000000000000000000000000000, ...

This sequence will be submitted soon to the OEIS.
Arman, Accumulation de crayons de couleur, 1998

























Commentaires

Posts les plus consultés de ce blog

Confingame, 3e étape

Square my chunks and add

A square for three (chess)