More and more spiral stuff (with a few hand-woven grids)


The idea is to fill the cells of an infinite 2D lattice grid with integers that dont share any digit with their surrounding 8 cells. To do that we start with a zero somewhere and develop a square spiral S, always extending S with the smallest possible term not yet used (that doesnt lead to a contradiction). Questions: will S stop at some point? Could S be infinite if some backtracking is accepted?
[Hereunder is my (almost) original e-mail in French to Carole, explaining why the above 9 is followed by 30 and 44]:

>> Alors voilà, >> on enroule une spirale S autour de zéro, >> comme d’habitude, en l’étendant avec >> le plus petit terme T absent de S — de >> manière à ce qu’aucun des chiffres de T >> ne soit présent dans son voisinage V. >> Ce V est fait des 8 cases qui entourent T. >> On enroule facilement les nombres qui >> vont de 0 à 9.
>>
>> Mais le suivant, A, demande un calcul : >> A ne peut commencer par 1 (à cause >> du « 1 » dans son V), ni par 2 (à cause >> du « 2 ») ; en revanche il peut commencer
>> par 3 — comme  dans 30 — et vu qu'il n’y 
>> a aucun 0 actuellement dans le V de 30, 
>> on garde ce 30 ; on le met ici sous le 9 
>> de S. >> >> Le terme suivant ne peut commencer ni >> par 1, ni par 2, ni par 3 — mais 4 est ok. >> Les termes 40, 41, 42 et 43 sont interdits,
>> évidemment, mais 44 convient. >> >> Sous 44 on placera de même 10, le plus 
>> petit absent de S qui n’a ni 0 ni 1 dans 
>> son V à ce stade. >> Etc. >> >> Je croyais que S s’arrêterait rapidement — >> je vois qu’il n’en est rien ! >> J’ai déjà ce début pour S (attention, fait 
>> en 10 minutes d’un seul jet) : >> S = 0,1,2,3,4,5,6,7,8,9,30,44,10,55,11,
20,13,66,12,34,24,22,15,23,16,24,57,18,25,
36,27,48,26,34,56,47,28,50,49,58,60,27,35,
66,37,40,77,59,38,17,69,…
>> Question : ça bloquera quand ?!
>> Qu’en penses-tu ? C joli une grille carrée >> remplie de nombres qui ne partagent aucun >> chiffre avec leur voisinage immédiat, non ?
>> à+
>> É.
[Carole, this morning]:
Je confirme !
S = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 30, 44, 10, 55, 11, 20, 13, 66, 12, 33, 14, 22, 15, 23, 16, 24, 57, 18, 25, 36, 27, 48, 26, 34, 56, 47, 28, 50, 49, 58, 60, 29, 35, 67, 38, 40, 77, 59, 37, 19, 68, 39, 46, 70, 41, 80, 31, 65, 90, 17, 88, 21, 93, 51, 43, 69, 71, 32, 111, 73, 81, 64, 72, 89, 42, 91, 52, 61, 82, 400, 62, 45, 300, 54, 100, 85, 92, 53, 76, 94, 75, 200, 74, 83, 222, 63, 404, 78, 202, 79, 86, 101, 225, 84, 95, 406, 99, 205, 333, 98, 103, 444, 105, 336, 87, 303, 97, 335, 117, 338, 107, 96, 228, 116, 227, 339, 446, 110, 448, 102, 383, 106, 223, 449, 113, 555, 109, 445, 118, 229, 115, 334, 151, 203, 114, 557, 343, 666, 130, 272, 131, 777, 141, 667, 224, 556, 242, 778, 226, 779, 244, 119, 245, 161, 204, 669, 252, 4444, 232, 104, 575, 304, 559, 408, 155, 277, 353, 676, 595, 447, 599, 474, 108, 565, 700, 262, 477, 233, 677, 330, 464, 707, 266, 787, 696, 558, 206, 393, 208, 191, 255,...
_________________________________________________________________________________________________________

The above 2D square lattice was produced again with the help of a spiral S centered on 0. The idea, here, is to form a "level 2" spiral Z (made by the the dark blue small numbers "z" at every intersection), such that any "z" is always the sum of the 4 integers inside the 2x2 square 'beneath' it and z(k) shows (as a substring) the kth term of S.
Example:
The blue spiral starts with 10:
Z(1) = 10 as the sum 0+1+2+7 = 10 and 10 has the opening 0 of the red spiral S as a substring; 
Z(2) = 14 as the sum 0+7+3+4 = 14 and 14 has S(2) = 1 as a substring; 
Z(3) = 20 as the sum 0+4+5+11 = 20 and 20 has S(3) = 2 as a substring;
...
Last example (in the lower right 2x2 square):
Z(21) = 116 as the sum 9+46+41+20 = 116 and 116 has S(21) = 16 as a substring (the original 16 is in the upper left corner of the red spiral); etc.

We see that the spiral Z embeds the spiral that produced Z itself.
[Hereunder is my second e-mail in French to Carole, explaining how S was built]

Le 1er terme de la spirale S est visible dans la sommes des termes du 1er carré 2x2 (0 est dans 10) ; 
Le 2e terme de la spirale S est visible dans la sommes des termes du 2e carré 2x2 (1 est dans 14) ; 
Le 3e terme de la spirale S est visible dans la sommes des termes du 3e carré 2x2 (2 est dans 20) ; 
Le 4e terme de la spirale S est visible dans la sommes des termes du 4e carré 2x2 (7 est dans 27) ; 
Le 5e terme de la spirale S est visible dans la sommes des termes du 5e carré 2x2 (3 est dans 30) ; 
Le 6e terme de la spirale S est visible dans la sommes des termes du 6e carré 2x2 (4 est dans 24) ; 
Etc.
La suite « Spi dans Spi » commence ainsi (caveat habituel) : SdS = 0,1,2,7,3,4,5,11,15,6,8,13,9,10,91,14,12,17,
24,80,16,18,67,98,21,19,66,37,112,46,20,41,58,…

[update, May 27th]
Here are Carole's results, correcting mine:

SdS = 0, 1, 2, 7, 3, 4, 5, 11, 15, 6, 8, 13, 9, 21, 80, 25, 10, 18, 23, 81, 12, 31, 74, 180, 24, 14, 56, 48, 54, 105, 16, 82, 19, 154, 921, 68, 17, 45, 83, 124, 26, 931, 20, 53, 86, 28, 872, 845, 85, 22, 49, 126, 153, 869, 98, 712, 27, 65, 90, 95, 60, 737, 119, 181, 29, 195, 92, 906, 40, 679, 62, 699, 30, 78, 114, 37, 44, 116, 904, 285, 789, 32, 186, 938, 79, 548, 70, 642, 110, 850, 33, 120, 66, 893, 59, 130, 189, 859, 1126, 453, 34, 216, 746, 905, 76, 526, 125, 776, 573, 1548, 35, 220, 792, 182, 560, 118, 852, 317, 353, 9699, 933, 36, 133, 865, 757, 131, 218, 690, 723, 301, 312, 10353, 38, 111, 956, 650, 211, 397, 532, 1001, 268, 100, 8020, 426, 39, 137, 943, 960, 146, 183, 433, 606, 1216, 445, 554, 8216, 41, 46, 809, 135, 541, 827, 892, 670, 8171, 427, 521, 6867, 590, 42, 71, 897, 1048, 290, 282, 552, 973, 1220, 8972, 860, 1029, 6796, 43, 64, 233, 509, 1020, 660, 559, 404, 733, 6169, 890, 511, 7910, 215, 47, 121, 174, 643, 7934,...
Comme d’habitude SdS est la lexicographically première de termes
 distincts non négatifs.
_________________________________________________________________________________________________________

A variant (see the diagram above): Z(k) must start with S(k) — as opposed to embed, seen above; S must be the lexicographically earliest sequence of distinct terms > 0 [thus S(1) = 1] and, as seen before, Z must be the sum of the four integers of the 2x2 square 'beneath' it. The terms of S grow quickly, of course.
Example:
S(1) = 1 (red spiral) and Z(1) = 10 (blue spiral) as 10 is the sum 1+2+3+4 'beneath" Z(1) and 10 starts with 1;
S(2) = 2 (red spiral) and Z(2) = 20 (blue spiral) as 20 is the sum 1+4+5+10 'beneath" Z(2) and 20 starts with 2;
S(3) = 3 (red spiral) and Z(3) = 30 (blue spiral) as 30 is the sum 1+10+6+13 'beneath" Z(3) and 30 starts with 3;
S(4) = 4 (red spiral) and Z(4) = 40 (blue spiral) as 40 is the sum 1+13+24+2 'beneath" Z(4) and 40 starts with 4;
S(5) = 5 (red spiral) and Z(5) = 50 (blue spiral) as 50 is the sum 2+24+7+17 'beneath" Z(5) and 50 starts with 5;
S(6) = 10 (red spiral) and Z(6) = 100 (blue spiral) as 100 is the sum 2+17+78+3 beneath" Z(6) and 100 starts with 10;
...
Another (and last) example
The above right 2x2 square (at the end of the red spiral) leads to Z(17) being 900000 = 120180+12+7+779801 [the sum of the four integers 'beneath' Z(17)] as Z(17) must be the smallest available integer of the blue spiral beginning with 9 [= S(17)], this 9 being in the lower left square of the red spiral.

[in French to Carole again]: 
Là, les nombres de la suite d’origine croissent vite (sauf erreur — et début avec 1 comme signalé
dans mon e-mail précédent) :
ScS = 1,2,3,4,5,10,6,13,24,7,17,78,8,511,782,1609,9,
5377,11608,66376,11,13607,37474,40689,120180,
12,779801,… 
_______________________________________________________________________________________________


Another variant (above): Z(k) must end with S(k) — as opposed to embed or begin, seen before. S must be the lexicographically earliest sequence of distinct terms > 0 [thus S(1) = 1] and, as seen before, Z must be the sum of the four integers of the 2x2 square 'beneath' it.
Example:
S(1) = 0 (red spiral) and Z(1) = 10 (blue spiral) as 10 is the sum 0+1+2+7 'beneath" Z(1) and 10 ends in 0;
S(2) = 1 (red spiral) and Z(2) = 21 (blue spiral) as 20 is the sum 10+1+5+4 'beneath" Z(2) and 21 ends in 1;
S(3) = 2 (red spiral) and Z(3) = 32 (blue spiral) as 32 is the sum 0+11+4+17 'beneath" Z(3) and 32 ends in 2;
S(4) = 7 (red spiral) and Z(3) = 27 (blue spiral) as 27 is the sum 0+17+9+1 'beneath" Z(3) and 27 starts in 7; etc.
...
Another (and last) example
The upper right 2x2 square (of the red spiral) leads to Z(17) being 110 = 28+13+64+5  [the sum of the four integers 'beneath' Z(17)] as Z(17) must be the smallest available integer of the blue spiral ending in 10 [= S(17)], this 10 being in the lower left square of the red spiral.

[in French to Carole again]:
… et ici la SfS — où la spirale d’origine _termine_ la 
spirale « des sommes 2x2 » de niveau supérieur :
SfS = 0,1,2,7,3,11,4,17,9,5,8,100,6,16,92,27,10,15,19,
1066,12,14,81,85,28,13,64,38,73,887,15,104,88,… Près du coin inférieur droit (illu) il y a une somme 1066
(au bic) intéressante en ce qu’elle est _identique_ au 
terme correspondant de la spirale (le terme 1066 au
crayon en haut à G de la spirale), ce qui est légal, bien 
sûr !
_______________________________________________________________________________________________

The above spiral is the last one of the day: the succession of the digits of S is the same as the succession of the digits of Z.
And Z(k) is, as always, the sum of the terms in the 2x2 square 'beneath' Z(k).
Example:
– the first 2x2 formed by S has sum 12 = 12+2+3+6, and this 12 comes from S(1)=1 and S(2)=2 (red spiral);
– the second 2x2 formed by S has sum 36 = 1+6+4+25, and this 36 comes from S(3)=3 and S(4)=6 (red spiral);
– the third 2x2 formed by S has sum 42 = 1+25+5+11, and this 42 comes from S(5)=4 and the first digit of S(6)=25 (red spiral);

Look at the seqs S and Z (on top of each other hereunder): the digit-succession is the same in both seqs:

S = 1,2,3,6,4,25,5,11,41,7,64,107,8,292,481,433,9,368,...
Z = 12, 36, 42, 55, 114,176,410,782, 924,814,3393,...

And our last e-mail in French to Carole:
Hello Carole,
Spi5 = 1,2,3,6,4,25,5,11,41,7,64,107,8,292,481,433,9,368,…
Sommes=12,36,42,55,114,176,410,782,924,814,3393,…
Les deux successions de chiffres sont identiques (modulo erreurs).
_______________________________________________________________________________________________


The above green-arrows-spiral, or another update, Friday 28th, May 2022
On an infinite square grid we put a distinct integer A in every cell such that at least one of the digits of A is present in the vertical sum of the 3-term segment N-A-S, and at least one of the digits of A is present in the horizontal sum of the 3-term segment O-A-E (might be the same digit of A, or another one of A).
Example:
– we have above S(1)=0, S(2)=1, S(3)=2, S(4)=3, S(5)=8... and this 8 is a substring of both 38 (=27+8+3) and 58 (=9+8+11);
– two squares above 8 we have S(7)=12; the 1 of 12 is a substring of 105(=86+12+7) and the 2 of 12 is a substring of 32 (=11+12+9).

Variant #1 is when we consider a cross in the shape of 'X' instead of the above shape '+' and
Variant #2 is when we superpose 'X' and '+' and consider the 4 sums in which A is embedded. 

In French:

Hello Carole,
G eu cette idée aussi :
sur une lexico-grille carrée avec des 
nombres distincts (comme tu connais)
on peut imaginer la règle suivante :
— tout nombre A est au centre d’une
« croix » composée des 4 nombres
qui lui sont collés horizontalement
et verticalement [illu : le nombre A
est collé à N (nord), E (est), S (sud) et
O (ouest)] ;
— nous exigeons qu’un des chiffres
de A se retrouve dans O+A+E mais
aussi dans N+A+S (ça peut être un
chiffre de A différent).
Voilà. On construit la grille à l’aide
d’une lexico-spirale classique.
— Ainsi le zéro central de l’illu [c’est
donc S(1)] est il dans 9+0+1 = 10
et dans 7+0+3 = 10 aussi.
Dernier exemple :
— Le 12 en haut à gauche de l’illu
est au centre d’une croix dont la
branche horizontale vaut 105
(=86+12+7) : ce 105 contient bien
le « 1 » de 12, alors que la branche
verticale vaut 32 (=11+12+9),
lequel 32 contient bien le « 2 » de 12.
Cette SpiBoussole est une permutation
des non-négatifs.

La variante /1/ évidente est celle où
l’on ne considère pas une croix en
forme de « + » comme ici, mais une
croix en forme de « x ».

La variante /2/ combine « + » et « x ».
Ça doit être monstrueux !-))

Ma lexico-SpiBoussole doit être très
rapidement bancale, pardon — la voici :
quand même :
SB = 0,1,2,3,8,9,12,7,18,6,10,15,16,17,28,41,5,27,40,
86, 20,11,30,19,40,21,22,29,42,31,38,25,…
Bancale, en effet — je vois que le 40 à
la fin de la 1re ligne doit être remplacé
par 20, faussant ainsi le reste de la spirale...
Encore raté, caramba !
__________________________________________________________________________________
Update by Carole and corrections; this is the new SB sequence(which we will call S+ from now on) and the corresponding blue spiral of the corrected above "cross sequence"; its precise definition is:
—> any "+" shape formed by 5 terms has an integer A in its center such that at least one digit of A is present in the sum of the 3-horizontal bar integers of the "+" shape AND at least one digit of A is also present in the sum of the 3-vertical integers of the same "+" shape (the digits can differ or be the same, see the Example below):

S+ = 0, 1, 2, 3, 8, 9, 12, 7, 18, 6, 10, 15, 16, 17, 28, 41, 5, 27, 20, 13, 4, 11, 66, 19, 30, 14, 22, 89, 37, 31, 23, 25, 54, 55, 42, 24, 26, 29, 35, 21, 36, 39, 34, 32, 58, 63, 44, 47, 73, 33, 40, 74, 50, 51, 46, 45, 43, 38, 82, 64, 68, 49, 75, 61, 48, 52, 56, 53, 76, 57, 92, 65, 59, 60, 67, 69, 103, 71, 77, 126, 62, 70, 87, 80, 81, 117, 72, 79, 78, 113, 90, 85, 107, 95, 88, 105, 98, 86, 83, 84, 91, 99, 104, 100, 97, 110, 94, 93, 96, 106, 101, 111, 102, 108, 109, 114, 122, 146, 116, 119, 144, 118, 115, 128, 138, 123, 112, 127, 132, 124, 125, 133, 120, 136, 129, 130, 121, 131, 134, 135, 145, 137, 148, 139, 142, 140, 143, 147, 149, 141, 154, 153, 150, 155, 151, 159, 161, 163, 191, 156, 165, 181, 164, 168, 178, 169, 170, 167, 175, 158, 152, 171, 174, 162, 160, 182, 172, 157, 179, 173, 166, 176, 177, 187, 184, 180, 186, 185, 192, 194, 183, 196, 190, 193, 188, 197, 189, 195, 198, 199, 200, ...

Example (consider the S+ corresponding blue spiral hereafter):
–> S+(1) = the initial 0 is present in the 3-term horizontal sum 10 (=9+0+1) AND in the same 3-term vertical sum 10 (=7+0+3);
—> S+(9) = 18 has its digit "1" present in the 3-term horizontal sum 31 (=7+18+6) AND its digit "8" present in the 3-term vertical sum 38 (=19+18+1);
__________________________________________________________________________________
Now for the...
Variant #1 (we look at the X shape sums instead of the + sums): 

SX = 0, 1, 2, 3, 4, 5, 8, 6, 16, 7, 9, 10, 18, 15, 11, 19, 20, 14, 25, 17, 30, 29, 35, 45, 40, 39, 28, 26, 24, 49, 21, 13, 36, 46, 38, 27, 48, 12, 22, 31, 23, 50, 32, 34, 52, 33, 42, 43, 44, 37, 41, 56, 60, 79, 51, 55, 53, 63, 59, 61, 72, 73, 54, 66, 70, 65, 76, 62, 78, 67, 64, 58, 68, 69, 105, 57, 47, 71, 129, 75, 80, 77, 74, 81, 82, 91, 88, 87, 83, 101, 84, 85, 94, 108, 95, 93, 92, 115, 102, 103, 86, 89, 98, 114, 136, 90, 118, 128, 97, 100, 96, 106, 99, 135, 138, 104, 125, 113, 116, 107, 124, 123, 109, 143, 110, 120, 119, 132, 137, 117, 134, 144, 111, 127, 126, 112, 122, 130, 121, 140, 131, 133, 139, 141, 142, 145, 155, 166, 150, 152, 146, 156, 162, 185, 148, 147, 165, 151, 175, 154, 172, 149, 158, 153, 160, 157, 161, 159, 167, 163, 168, 169, 178, 170, 186, 171, 190, 173, 164, 174, 176, 177, 196, 179, 194, 181, 200, 184, 197, 180, 198, 182, 187, 183, 188, 189, 191, 192, 199, 201, 204,...

The blue spiral corresponding to the X-shape sums is hereunder:
Example:
– SX(1) = 0; the initial 0 is present in the 3-term diagonal sum "/" 20 (=16+0+4) AND in the other 3-term diagonal "\" sum 10 (=8+0+2);
— SX(12) = 10 has its digit "1" present in the 3-term diagonal sum "/" sum 51 (=26+10+15) AND its digit "0" present in the 3-term diagonal "\" sum 60 (=1+10+49); etc.
__________________________________________________________________________________
Now for the...
Variant #2 (we look both at the X shape sums and the + shape sums): 

SX+ 0, 1, 2, 3, 8, 9, 78, 7, 12, 6, 10, 97, 20, 18, 30, 269, 40, 73, 50, 82, 49, 70, 60, 131, 80, 19, 28, 79, 68, 69, 58, 63, 62, 4, 48, 34, 22, 5, 26, 31, 43, 29, 17, 13, 92, 23, 98, 72, 46, 16, 14, 51, 81, 24, 87, 27, 11, 25, 90, 134, 100, 272, 56, 35, 59, 67, 130, 66, 140, 107, 44, 83, 21, 32, 39, 61, 41, 109, 101, 71, 38, 74, 42, 84, 52, 36, 142, 115, 93, 75, 37, 33, 167, 76, 53, 64, 47, 136, 146, 65, 15, 45, 85, 165, 164, 135, 153, 168, 137, 77, 103, 57, 193, 86, 203, 88, 293, 108, 102, 54, 129, 55, 128, 89, 151, 174, 96, 99, 199, 117, 111, 113, 91, 95, 119, 127, 191, 161, 184, 138, 110, 143, 112, 106, 94, 132, 144, 105, 121, 126, 114, 163, 139, 133, 149, 147, 116, 148, 157, 120, 123, 171, 179, 189, 200, 231, 122, 118, 172, 124, 141, 185, 154, 166, 198, 177, 298, 284, 268, 125, 187, 145, 162, 197, 213, 207, 237, 192, 152, 159, 104, 155, 156, 175, 160, 169, 150, 190, 173, 215, 225, 

The blue spiral corresponding to the Xand+ shape sums is hereunder:
Example:
– SX+(1) = 0; the initial 0 is present in the 3-term horizontal sum 10 (=9+0+1) AND in the same 3-term vertical sum 10 (=7+0+3) AND in the 3-term diagonal "/" sum 20 (=12+0+8) AND in the 3-term diagonal "\" sum 80 (=78+0+2);
— SX+(46) = 23 (locatedv3 cells on top of the initial 0 in the blue spiral above) and 23 has its digit "2" (and also "3") present in the 3-term horizontal sum 213  (=92+23+98) AND the same its digit 2 again in the 3-term vertical sum 124 (=41+23+60) AND MORE, the digit 2 of 23 is in the 3-term diagonal "/" that sums up to 202 (=109+23+70AND in the 3-term diagonal "\" that sums up to 215 (=61+23+131); etc.

______________________________________________________________________________________________________

Another update (May 29th) with this beautiful spiral by Scott Shannon (explanation below the picture – click it to enlarge):
Both the sum of the four integers inside a 2x2 "box" and the sum of the digits inside the same box are square numbers – waooow! 
Example:
– the 1st box with the 0 contains the 4-term sum 25 (=0+1+19+6) and the digit-sum 16 (=0+1+1+9+6), which are two squares;
– the "a" box contains the 4-term sum 169 (=2+25+141+1) and the digit-sum 16 (=2+2+5+1+4+1+1), which are two squares;
– the "b" box contains the 4-term sum 144 (=19+8+26+91) and the digit-sum 36 (=1+9+8+2+6+9+1), which are two squares;
– the "pink arrow" box contains the 4-term sum 169 (=4+5+29+131) and the digit-sum 25 (=4+5+2+9+1+3+1), which are two squares; etc.

Scott's spiral produces the hereunder sequence Z (now in the OEIS as A354111):

Z = 0, 1, 2, 6, 3, 7, 4, 5, 19, 8, 141, 25, 9, 133, 28, 132, 10, 24, 135, 23, 11, 131, 29, 91, 26, 12, 98, 378, 32, 78,13, 44, 39, 124, 157, 230, 14, 275, 220, 105, 178, 229, 15, 69, 365, 51, 54, 153, 385, 16, 163, 303, 62, 104, 227, 123, 17, 43, 476, 66,212, 83, 106, 134, 18, 30, 210, 195, 56, 102, 647, 265, 20, 276, 481, 241, 72, 48, 321, 41, 399, 21, 140, 257, 1041, 358, 52, 58, 33, 268,22, 422, 94, 228, 71, 92, 342, 45, 156, 421, 27, 263, 418, 638, 806, 879, 119, 221, 716, 520, 31, 390, 214, 185, 249, 279, 226, 305, 629, 867,649, 34, 1060, 460, 232, 234, 576, 170, 161, 324, 819, 47, 35, 337, 308, 1201, 502, 720, 206, 260, 82, 558, 309, 143, 36, 118, 748, 420, 373, 299,1985, 42, 59, 300, 1065, 148, 37, 108, 371, 114, 63, 128, 500, 439, 186, 996, 757, 976, 277, 38, 492, 1015, 381, 223, 607, 432, 266, 559, 805, 261,317, 330, 40, 495, 1342, 717, 478, 955, 527, 311, 519, 295, 1874, 68, 636, 1210, 46, 472, 103, 120, 233, 270, 994, 691, 1003, 192, 893, 446, 190, 201,49, 154, 142, 900, 136, 416, 122, 211, 146, 70, 684, 479, 389, 959, 95, 50, 658, 928, 701, 207, 710, 224, 501, 322, 702, 1070, 568, 703, 171, 188,53, 160, 205, 167, 799, 1031, 240, 127, 331, 360, 1035, 892, 191, 1314, 440, 329, 55, 726, 605, 116, 145, 591, 202, 383, 741, 269, 745, 286, 491, 722,183, 1331, 57, 772, 181, 252, 470, 1198, 3150, 281, 410, 529, 96, 306, 467, 601, 860, 1930, 1646, 60, 948, 1369, 1141, 366, 575, 357, 918, 121, 80, 417,115, 456, 1298, 532, 553, 362, 61, 253, 434, 290, 179, 4939, 1152, 493, 296, 87, 666, 643, 1151, 902, 297, 158, 517, 255, 64, 782, 3478, 1591, 392, 791, ...
______________________________________________________________________________________________________

Another wonderful task performed by Maximilian H. this morning (May the 30th, 2022):

—> The same sequence W (of distinct nonnegative terms, lexicographically) forms both a spiral S1 filling an infinite 2D square grid G1 and the antidiagonals of an infinite array A1 (tiling the South-East 1/4 of a 2D square grid), in such a manner that any 2x2 "box" of G1 and of A1 contains 4 terms whose sum is a square!
Example1we see that the above 2x2 box in the down left corner (with integers 25189, 13, 36, 43) has a square sum when we add the said integers: 25189+13+36+43=25281 (=159^2);
Example2: we see that the above 2x2 box in the down right corner (with integers 2, 375, 20, 1628) has a square sum when we add the said integers: 2+375+20+1628=2025 (=45^2); etc.

BUT we see hereunder that if the same sequence W sows its terms along the antidiagonals of a 1/4 grid (successive red arrows) we get different 2x2 "boxes" (next illustration):
Example3: we see that the above 2x2 blue box in the upper left corner (with integers 0, 1, 13, 2) has a square sum when we add the said integers: 0+1+13+2=16;
Example4: we see that the next 2x2 blue box in the center (with integers 16, 375, 20, 25189) has a square sum when we add the said integers: 
16+375+20+25189=25600 (=160^2); etc. Bravo Maximilian, this is a hell to compute (due to the backtracking).
This is a draft now (in the OEIS) but will be soon a full entry.

______________________________________________________________________________________________________

Carole has just proposed this now (does she sleep sometimes?-):

Any horizontal ABC or vertical XYZ alignment of 3 neighboring terms has a square sum:

S3+sq = 0, 1, 2, 3, 4, 8, 13, 22, 46, 32, 24, 44, 53, 6, 166, 312, 51, 18, 892, 3446, 151, 15, 59, 122, 3788, 186, 43, 171, 75, 8590, 360, 47, 617, 120, 43784, 137572, 973, 37, 14, 19549, 4462, 5918, 229, 124, 872, 448, 616, 536, 612, 77, 251, 15801, 589, 16010, 1357, 322, 85, 266, 15525, 338, 36578, 88400, 362226, 69215, 208, 584, 108, 2672,...
Example
The initial 0 above is horizontally aligned with 8 and 892 and 0+8+892=900 (square of 30);
but 0 is also aligned with 8 and 1: 8+0+1=9;
and 0 is aligned with 1 and 24: 0+1+24=25.
Vertically, we have three more alignments:
0+3+166=169 (square of 13);
22+0+3=25;
59+22+0=81; etc.

Carole has performed the same task hereunder – but with the constraint "prime sum" instead of "square sum". The definition of the S3+pr sequence is:
«Spiral on a 2D square lattice, one term per cell, starting at the origin with 0; any horizontally or vertically aligned and neighboring cells add up to a prime»:

S3
+pr0, 1, 2, 3, 6, 4, 7, 8, 14, 9, 10, 12, 15, 16, 28, 27, 18, 20, 33, 26, 24, 30, 5, 32, 22, 13, 36, 48, 17, 42, 38, 34, 11, 52, 40, 21, 46, 44, 41, 64, 68, 19, 50, 23, 66, 60, 25, 72, 54, 31, 62, 56, 39, 78, 74, 29, 70, 47, 82, 100, 51, 90, 58, 49, 84, 96, 77, 120, 114, 37, 88, 108, 43, 80, 104, 55, 92, 94, 85, 132, 130, 45, 106, 76, 57, 124, 102, 81, 166, 112, 35, 98, 138, 75, 118, 154, 111, 144, 128, 59, 126, 136, 69, 142, 156, 61, 172, 116, 65, 208, 86, 160, 67, 204, 148, 87, 162, 190, 91, 150, 180, 53, 174, 140, 95, 198, 168, 83, 122, 178, 89, 220, 110, 134, 73, 146, 202, 113, 184, 152, 151, 176, 164, 117, 158, 182, 93, 188, 242, 133, 226, 210, 127, 186, 228, 107, 206, 79, 194, 170, 123, 216, 218, 153, 192, 196, 99, 214, 234, 109, 200, 212, 175, 230, 236, 97, 224, 296, 213, 248, 266, 63, 240, 71, 252, 278, 147, 222, 232, 165, 246, 262, 105, 264, 244, 139, 258, 272, 101, 270, 290,...
Example
The initial 0 above is horizontally aligned with 33 and 4 and 33+4+0=37 (a prime);
but 0 is also aligned with 4 and 1: 4+0+1=5;
and 0 is aligned with 1 and 10: 0+1+10=11.
Vertically, we have three more alignments:
0+3+28=31 (a prime again);
8+0+3=11;
5+8+0=13; etc.

The same idea – but with both diagonal alignments "/" and "\" adding up to a prime:

S3Xpr0, 1, 2, 3, 4, 5, 9, 6, 7, 13, 8, 10, 11, 15, 19, 25, 27, 12, 14, 21, 20, 16, 38, 18, 22, 17, 31, 28, 26, 30, 24, 23, 36, 34, 32, 33, 40, 42, 44, 46, 29, 35, 50, 37, 52, 66, 54, 43, 60, 41, 58, 71, 114, 48, 39, 49, 62, 45, 76, 78, 80, 64, 56, 51, 70, 47, 55, 82, 102, 79, 84, 53, 57, 74, 59, 65, 91, 67, 75, 88, 69, 73, 68, 94, 93, 61, 118, 63, 72, 100, 77, 81, 99, 85, 111, 96, 83, 95, 103, 89, 87, 90, 98, 101, 132, 109, 105, 144, 86, 123, 92, 112, 128, 150, 124, 131, 134, 148, 104, 108, 110, 97, 107, 166, 140, 142, 106, 139, 117, 130, 116, 120, 138, 113, 156, 168, 122, 121, 172, 137, 174, 152, 154, 129, 126, 146, 160, 170, 115, 159, 232, 162, 194, 186, 141, 135, 158, 125, 210, 204, 164, 149, 200, 153, 176, 216, 180, 151, 188, 143, 136, 119, 246, 218, 165, 147, 184, 167, 196, 228, 161, 127, 182, 155, 224, 234, 198, 214, 212, 177, 226, 258, 192, 294, 206, 171, 208, 173, 191, 342, 202,...
Example
The initial 0 above is part of six 3-term alignments of neighboring terms, situated on a diagonal.
The "/" alignements are:
22+7+0=29 (a prime);
7+0+4=11;
0+4+27=31.
The "\" alignements are:
20+9+0=31;
9+0+2=11;
0+2+11=13; etc.

The variant where the six such alignments add up to a square instead of a prime (like above) needs a lot of backtrack — and was thus halted after a few terms:

S3Xsq = 0, 1, 2, 3, 4, 5, 7, 6, 12, 21, 8, 9, 14, 17, 15, 32, 45, 25, 30, 28, 18, 29, 44, 38, 13, 27, 26, 230, 16, 39, 20,...
______________________________________________________________________________________________________
And more (from Carole):
«Spiral on a 2D square lattice, one term per cell, starting at the origin with 0; the four integers at the corners of any 3x3 square add up to a square»:

S33Sq = 0, 1, 2, 3, 4, 5, 6, 7, 13, 8, 9, 18, 10, 11, 17, 19, 12, 14, 20, 25, 15, 16, 29, 27, 26, 21, 22, 32, 44, 37, 23, 24, 31, 36, 63, 28, 30, 33, 47, 43, 64, 57, 34, 35, 40, 54, 41, 52, 45, 38, 39, 46, 70, 49, 55, 53, 42, 48, 62, 73, 80, 66, 60, 51, 50, 56, 74, 71, 90, 59, 100, 77, 58, 61, 83, 91, 69, 122, 72, 86, 88, 65, 67, 84, 155, 119, 68, 101, 121, 103, 75, 76, 105, 136, 97, 93, 98, 99, 133, 106, 78, 79, 120, 126, 92, 87, 158, 102, 144, 104, 81, 82, 141, 95, 109, 140, 134, 115, 180, 156, 108, 85, 89, 162, 145, 154, 107, 112, 129, 110, 135, 161, 94, 96, 170, 114, 167, 165, 132, 137, 128, 146, 123, 124, 111, 113, 116, 125, 160, 148, 117, 163, 177, 142, 149, 183, 118, 127, 159, 192, 184, 185, 193, 131, 150, 190, 174, 143, 178, 130, 138, 191, 171, 189, 232, 233, 221, 172, 166, 153, 214, 224, 139, 147, 197, 241, 152, 223, 175, 173, 206, 164, 188, 207, 226, 199, 151, 157, 274, 169, 204,...
Example
The initial 0 above is the 4th corner of four 3x3 squares which are:
– the NW square formed by 0,20,15,29 (sum=64, a square);
– the NE square formed by 0,29,26,9 (sum=64);
– the SE square formed by 0,9,10,17 (sum=36);
– the SW square formed by 0,17,12,20 (sum=49); etc.

The same idea hereunder — with primes instead of squares:

«Spiral on a 2D square lattice, one term per cell, starting at the origin with 0; the four integers at the corners of any 3x3 square add up to a prime»:

S33Pr = 0, 1, 2, 3, 4, 5, 6, 7, 11, 8, 9, 13, 10, 12, 18, 19, 14, 15, 21, 16, 17, 20, 23, 27, 29, 22, 24, 33, 30, 25, 26, 28, 31, 35, 34, 36, 32, 37, 39, 40, 48, 38, 41, 42, 44, 62, 46, 50, 56, 43, 45, 66, 54, 52, 58, 64, 47, 49, 76, 51, 53, 55, 72, 68, 57, 59, 80, 63, 78, 69, 65, 70, 60, 61, 81, 74, 90, 102, 85, 82, 92, 67, 71, 86, 88, 98, 87, 73, 84, 94, 75, 77, 96, 100, 104, 106, 108, 116, 83, 120, 79, 89, 99, 113, 93, 91, 97, 112, 95, 126, 101, 103, 110, 122, 118, 105, 109, 114, 136, 124, 134, 107, 111, 115, 119, 123, 129, 132, 138, 125, 130, 117, 121, 127, 133, 131, 141, 128, 139, 145, 137, 151, 135, 149, 140, 142, 147, 146, 155, 153, 144, 148, 152, 156, 154, 150, 143, 157, 164, 159, 158, 163, 162, 160, 166, 165, 178, 173, 176, 161, 167, 168, 169, 170, 171, 187, 175, 183, 177, 191, 185, 181, 172, 174, 199, 179, 193, 201, 184, 180, 197, 205, 189, 190, 196, 195, 182, 186, 202, 207, 213,...
Example
The initial 0 above is the 4th corner of four 3x3 squares which are:
– the NW square formed by 0,21,17,23 (sum=61, a prime);
– the NE square formed by 0,23,29,9 (sum=61);
– the SE square formed by 0,9,10,18 (sum=37, a prime);
– the SW square formed by 0,18,14,21 (sum=53, a prime); etc.

A last "graphic" fantasy hereunder: 
«Lexicographically earliest spiral of distinct nonnegative terms on a 2D square lattice, one term per cell, starting at the origin with 0; the cells containing one ore more 1s cannot touch each other and form a new 2D square lattice»:
S1BLUE = 0,1,2,3,4,10,5,6,7,8,9,20,22,11,23,12,24,25,26,27,28,13,29,14,30,15,32,16,33,17,34,35,36,37,38,39,40,18,42,19,43,21,45,46,47,48,49,50,52,53,54,55,56,57,58,59,31,60,41,62,51,63,61,64,65,66,67,68,69,70,72,73,71,74,81,75,91,76,100,77,101,78,102,79,103,80,104,82,105,83,106,84,107,...
______________________________________________________________________________________________________
Another variant from Carole:
«Lexicographically earliest spiral of distinct nonnegative terms on a 2D square lattice, one term per cell, starting at the origin with 0 such that the 8 cells surrounding any integer sum up to a prime»:

T8pr
0, 1, 2, 3, 4, 5, 6, 7, 9, 8, 10, 14, 11, 12, 16, 13, 15, 17, 20, 22, 18, 19, 36, 21, 24, 23, 25, 26, 28, 37, 27, 29, 30, 32, 31, 33, 34, 35, 44, 43, 38, 42, 39, 40, 45, 49, 41, 53, 47, 46, 48, 56, 62, 54, 55, 51, 50, 52, 64, 60, 57, 58, 59, 66, 61, 63, 65, 76, 78, 72, 84, 70, 67, 68, 74, 92, 69, 86, 71, 88, 80, 73, 75, 87, 90, 82, 96, 77, 79, 102, 81, 83, 94, 89, 98, 100, 112, 85, 104, 108, 91, 93, 114, 95, 110, 99, 105, 118, 103, 120, 97, 101, 111, 115, 107, 132, 109, 117, 106, 121, 127, 113, 116, 119, 122, 135, 141, 123, 125, 126, 133, 124, 128, 129, 134, 131, 130, 140, 147, 137, 144, 143, 145, 136, 138, 139, 151, 150, 149, 154, 161, 155, 152, 142, 158, 169, 146, 148, 160, 166, 156, 163, 170, 157, 165, 159, 176, 162, 168, 153, 164, 188, 172, 180, 173, 174, 178, 190, 182, 175, 192, 177, 167, 171, 196, 186, 187, 184, 194, 181, 189, 193, 200, 202, 179, 185, 183, 191, 197, 204, 199,...
Example
– the 8 terms surrounding the initial zero are 1,2,3,4,5,6,7,9 with sum 37 (a prime);
– the 8 terms surrounding 11 (two diagonal steps towards SE from 0) are 2,14,28,37,27,29,30,12 with sum 179 (a prime);
– the 8 terms surrounding 15 (two diagonal steps towards SW from 0) are 4,13,31,33,34,35,44,17 with sum 211 (a prime); etc.
______________________
And this variant, of course, with the squares (instead of the primes):
«Lexicographically earliest spiral of distinct nonnegative terms on a 2D square lattice, one term per cell, starting at the origin with 0 such that the 8 cells surrounding any integer sum up to a square»:

T8sq0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 11, 12, 19, 21, 13, 14, 46, 20, 15, 16, 35, 29, 30, 17, 18, 31, 27, 50, 22, 23, 64, 49, 41, 26, 24, 28, 38, 70, 39, 59, 32, 33, 51, 58, 81, 61, 66, 34, 36, 107, 84, 44, 69, 68, 37, 40, 63, 62, 85, 57, 54, 86, 42, 43, 108, 95, 67, 122, 130, 93, 45, 47, 154, 110, 155, 52, 109, 100, 97, 48, 53, 112, 77, 201, 71, 92, 202, 113, 55, 56, 120, 140, 105, 96, 102, 76, 72, 104, 60, 65, 75, 101, 80, 133, 99, 79, 153, 131, 73, 74, 126, 119, 158, 172, 159, 166, 156, 152, 175, 78, 82, 170, 150, 157, 114, 187, 233, 87, 142, 137, 83, 88, 128, 148, 117, 129, 149, 211, 296, 146, 220, 209, 89, 90, 205, 165, 171, 163, 123, 151, 219, 189, 138, 135, 91, 94, 192, 253, 272, 176, 286, 200, 229, 291, 225, 204, 203, 98, 103, 111, 162, 182, 243, 217, 143, 298, 145, 144, 141, 134, 106, 115, 124, 263, 235, 237, 255, 197, 274, 179, 236, 186, 212, 195, 116, 118, 369, 181, 364,...
Example
– the 8 terms surrounding the initial zero are 1,2,3,4,5,6,7,8 with sum 36 (a square);
– the 8 terms surrounding 11 (two diagonal steps towards SE from 0) are 2,25,27,50,22,23,64,12 with sum 225 (the square of 25);
– the 8 terms surrounding 13 (two diagonal steps towards SW from 0) are 4,21,41,26,24,28,38,14 with sum 196 (the square of 14); etc.

______________________________________________________________________________________________________
More submissions coming soon (?)

The hereunder nice "spiral" pix are taken from the opening titles' sequence of Charade, the wonderful 1963-film by Stanley Donen shot in Paris with Audrey Hepburn, Cary Grant, Walter Matthau, James Coburn, etc.

(Design by Maurice Binder)




 

 








Commentaires

Posts les plus consultés de ce blog

A square for three (chess)

Le tripalin se présente

Some strings au cinéma Galeries