Fun with roots
We look for the digital
root of a(n) and concatenate it to a(n). Then iterate. What do successive
whole numbers produce?
a(1) = 1,
11, 112, 1124, 11248, 112487, 1124875, 11248751, 112487512, 1124875124, 11248751248,
112487512487, 1124875124875, ...
The yellow pattern is repeated ad infinitum.
a(1) = 2,
22, 224, 2248, 22487, 224875, 2248751, ...
The cyan pattern will also be repeated ad infinitum.
a(1) = 3,
33, 336, 3363, 33636, 336363, 3363636, 33636363, 336363636, ...
The green pattern will be repeated for
ever.
a(1) = 4,
44, 448, 4487, 44875, 448751, 4487512, ... The grey pattern, etc.
a(1) = 5, 55, 551,
5512, 55124, 551248, 5512487, 5512487, ...
a(1) = 6, 66, 663,
6636, 66363, ...
a(1) = 7, 77, 775,
7751, 77512, 775124, 7751248, 7751248, ...
a(1) = 8, 88, 887,
8875, 88751, 887512, 8875124, ...
a(1) = 9, 99, 999,
9999, 99999, ...
a(1) = 10,
101, 1012, 10124, 101248, 1012487, 10124875, ...
a(1) = 11,
112, 1124, 11248, 112487, 1124875, ...
a(1) = 12,
123, 1236, ...
a(1) = 13,
134, 1348, 13487, 137875, 1348751, 13487512, ...
a(1) = 14,
145, 1451, 14512, 145124, 1451248, 14512487, ...
a(1) = 15,
156, 1563, ...
a(1) = 16,
167, 1675, 16751, 167512, 167124, 16751248, ...
a(1) = 17,
178, 1787, 17875, 178751, 1787512, 17875124, ...
a(1) = 18,
189, 1899, ...
a(1) = 19,
191, 1912, 19124, 191248, 1912487, 19124875, ...
a(1) = 20,
202, 2024, 20248, 202487, 2024875, 20248751, ...
etc.
Question #1
What is the smallest integer a(1) that will produce a number
that contains at least one copy of all the digits from 0 to 9?
The answer might be the number written (in white “invisible” ink) here:10369
Question #2
How does the sequence Z behave if…
1) we start Z with a(1) = 1;
2) we pause Z immediately after a prime number appears or immediately after a number with digital root 3, 6 or 9 appears;
3) we then extend Z with the smallest integer not yet present in Z;
4) and we resume the iteration.
Here is the author's try:
Starting with a(1) = 1 we have (primes in red)
S = 1, 11 – we pause as 11 is prime. We extend S with 2:
S = 1, 11, 2 – we pause as 2 is prime. We extend S with 3:
S = 1, 11, 2, 3 – we
pause as 3 is prime (and has a DR of 3). We extend S with 4:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487 – we
pause as this is a prime. We extend S with 5:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5 – we pause as 5 is prime. We extend S with 6:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6 – we pause
as 6 has a DR of 6. We extend S with 7:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7 – we pause as 7 is prime. We extend S with 8:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887 – which is
prime. We
extend S with 9:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9 – we pause as 9 has a DR of 9. We extend S
with 10:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101 – which is prime.
We
extend S with 12 (as 11 is already present in S):
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101, 12 – we pause as 12 has a DR
of 3. We extend S with 13:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101, 12, 13 – which is prime. We pause and extend S with 14:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101, 12, 13, 14, 145, 1451 – which is prime.
We
extend S with 15:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101, 12, 13, 14, 145, 1451,
15 –
which has a DR of 6. We extend S with 16:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101, 12, 13, 14, 145, 1451,
15, 16, 167 – which is prime.
We
extend S with 17:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101, 12, 13, 14, 145, 1451,
15, 16, 167,
17 – which
is prime. We extend S with 18:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101, 12, 13, 14, 145, 1451,
15, 16, 167,
17, 18 – which has a DR of 6. We extend S with 19:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101, 12, 13, 14, 145, 1451,
15, 16, 167,
17, 18, 19 – which is prime.
We
extend S with 20:
S = 1, 11, 2, 3, 4, 44,
448, 4487, 44875, 448751, 4487512, 44875124, 448751248, 4487512487, 44875124875,
448751248751, 4487512487512, 44875124875124, 448751248751248, 4487512487512487, 5,
6, 7, 8, 88, 887, 9, 10, 101, 12, 13, 14, 145, 1451,
15, 16, 167,
17, 18, 19,
20, 202, 2024, … which is now! (and time to let the reader explore Z by himself!)
P.-S.
The next prime number of S might be 20248751248751248751248751248751248751248751248751 [a 50-digit term repeating 8 times the yellow pattern we know! Will Z host a longer prime soon?]
;-D
____________________
First of August update
Maximilian Hasler was quick to send this (to Math Fun):
MH
> The "very next" prime in that sequence is indeed much larger, it's Z[280] =
22487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487
with 191 digits.
Hans Havermann was quick to post this (to Math Fun):
HH
> Looking only at record large primes, after z(280) we find z(1064) with 766 digits. The one after this is a doozie: z(3737+d) with d decimal digits, d > 32000.
Hans has wonderful blog where he mentions the seq:
The b-file of the above S seq is there:
... the size of the primes involved is absolutely ...
Here are the first 100 terms of S (they have been submitted to the OEIS, here):
S = 1, 11, 2, 3, 4, 44, 448, 4487, 44875, 448751,
4487512, 44875124, 448751248, 4487512487, 44875124875, 448751248751, 4487512487512,
44875124875124, 448751248751248, 4487512487512487, 5, 6, 7, 8, 88, 887, 9, 10, 101,
12, 13, 14, 145, 1451, 15, 16, 167, 17, 18, 19, 20, 202, 2024, 20248, 202487, 2024875,
20248751, 202487512, 2024875124, 20248751248, 202487512487, 2024875124875, 20248751248751,
202487512487512, 2024875124875124, 20248751248751248, 202487512487512487, 2024875124875124875,
20248751248751248751, 202487512487512487512, 2024875124875124875124, 20248751248751248751248,
202487512487512487512487, 2024875124875124875124875, 20248751248751248751248751,
202487512487512487512487512, 2024875124875124875124875124, 20248751248751248751248751248,
202487512487512487512487512487, 2024875124875124875124875124875, 20248751248751248751248751248751,
202487512487512487512487512487512, 2024875124875124875124875124875124, 20248751248751248751248751248751248,
202487512487512487512487512487512487, 2024875124875124875124875124875124875, 20248751248751248751248751248751248751,
202487512487512487512487512487512487512, 2024875124875124875124875124875124875124,
20248751248751248751248751248751248751248, 202487512487512487512487512487512487512487,
2024875124875124875124875124875124875124875, 20248751248751248751248751248751248751248751,
202487512487512487512487512487512487512487512, 2024875124875124875124875124875124875124875124,
20248751248751248751248751248751248751248751248, 202487512487512487512487512487512487512487512487,
2024875124875124875124875124875124875124875124875, 20248751248751248751248751248751248751248751248751,
21, 22, 224, 2248, 22487, 224875, 2248751, 22487512, 224875124, 2248751248, 22487512487,...
Merci beaucoup, Maximilian et Hans !
The author's conclusion was sent to Math Fun:
ÉA
> Marvelous vertigos – Hitchcock is really a small player when compared to the Math Fun team -- thanks !-)
Ce commentaire a été supprimé par l'auteur.
RépondreSupprimerNext prime is Z[280] = 22487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487512487 with 191 digits.
RépondreSupprimer