Talking to me?
Lexicographically
earliest sequence of nonnegative terms such that the last digit
of a(n) is present in a(n+1)
[corrected by Giorgos Kalogeropoulos and extended –red numbers– by Scott Shannon – this is now A370400 in the OEIS]:
S = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 1, 11, 12, 2, 21, 13, 3, 23, 31, 14, 4, 24, 34, 41, 15, 5, 25, 35, 45, 51, 16, 6, 26, 36, 46, 56, 61, 17, 7, 27, 37, 47, 57, 67, 71, 18, 8, 28, 38, 48, 58, 68, 78, 81, 19, 9, 29, 39, 49, 59, 69, 79, 89, 91, 102, 22, 32, 42, 52, 62, 72, 82, 92, 112, 120, 103, 33, 43, 53, 63, 73, 83, 93, 113, 123, 130, 104, 44, 54, 64, 74, 84, 94, 114, 124, 134, 140, 105, 55, 65, 75, 85, 95, 115, 125, 135, 145, 150, 106, 66, 76, 86, 96, 116, 126, 136, 146, 156, 160, 107, 77, 87, 97, 117, 127, 137, 147, 157, 167, 170, 108, 88, 98, 118, 128, 138, 148, 158, 168, 178, 180, 109, 99, 119, 129, 139, 149, 159, 169, 179, 189, 190, 110, 200, 201, 111, 121, 122, 132, 142, 152, 162, 172, 182, 192, 202, 203, 131, 133, 143, 153, 163, 173, 183, 193, 213, 223, 230, 204, 141, 144, 154, 164, 174, 184, 194, 214, 224, 234, 240, 205, 151, 155, 165, 175, 185, 195, 215, 225, 235, 245, 250, 206, 161, 166, 176, 186, 196, 216, 226, 236, 246, 256, 260, 207, 171, 177, 187, 197, 217, 227, 237, 247, 257, 267, 270, 208, 181, 188, 198, 218, 228, 238, 248, 258, 268, 278, 280, 209, 191, 199, 219, 229, 239, 249, 259, 269, 279, 289, 290, 210, 220, 300, 301, 211, 212, 221, 231, 241, 251, 261, 271, 281, 291, 310, 302, 222, 232, 233, 243, 253, 263, 273, 283, 293, 303, 304, 242, 244, 254, 264, 274, 284, 294, 314, 324, 334, 340, 305, 252, 255, 265, 275, 285, 295, 315, 325, 335, 345, 350, 306, 262, 266, 276, 286, 296, 316, 326, 336, 346, 356, 360, 307, 272, 277, 287, 297, 317, 327, 337, 347, 357, 367, 370, 308, 282, 288, 298, 318, 328, 338, 348, 358, 368, 378, 380, 309, 292, 299, 319, 329, 339, 349, 359, 369, 379, 389, 390, 320, 330, 400, 401, 311, 312, 321, 313, 322, 323, 331, 341, 351, 361, 371, 381, 391, 410, 402, 332, 342, 352, 362, 372, 382, 392, 412, 420, 403, 333, 343, 344, 354, 364, 374, 384, 394, 404, 405, 353, 355, 365, 375, 385, 395, 415, 425, 435, 445, 450, 406, 363, 366, 376, 386, 396, 416, 426, 436, 446, 456, 460, 407, 373, 377, 387, 397, 417, 427, 437, 447, 457, 467, 470, 408, 383, 388, 398, 418, 428, 438, 448, 458, 468, 478, 480, 409, 393, 399, 419, 429, 439, 449, 459, 469, 479, 489, 490, 430, 440, 500, 501, 411, 413, 423, 431, 414, 421, 441, 451, 461, 471, 481, 491, 510, 502, 422, 424, 432, 442, 452, 462, 472, 482, 492, 512, 520, 503, 433, 434, 443, 453, 463, 473, 483, 493, 513, 523, 530, 504, 444, 454, 455, 465, 475, 485, 495, 505, 506, 464, ...
Lexicographically
earliest sequence of nonnegative terms such that the first digit
of a(n) is present in a(n+1) [this is now A370401 in the OEIS]:
T = 0, 10, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 2,
20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 3, 30, 31, 33, 34, 35, 36, 37, 38, 39,
43, 4, 40, 41, 42, 44, 45, 46, 47, 48, 49, 54, 5, 50, 51, 52, 53, 55, 56, 57,
58, 59, 65, 6, 60, 61, 62, 63, 64, 66, 67, 68, 69, 76, 7, 70, 71, 72, 73, 74,
75, 77, 78, 79, 87, 8, 80, 81, 82, 83, 84, 85, 86, 88, 89, 98, 9, 90, 91, 92,
93, 94, 95, 96, 97, 99, 109, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110,
111, ...
Lexicographically
earliest sequence of nonnegative terms such that the last digit
of a(n) is present in a(n+1) and the last letter of the English name of
a(n) is present in the English name of a(n+1) [corrected and extended by GK – this is now A370402 in the OEIS]:
U = 0, 40, 20, 30, 50, 60, 70, 80, 90, 120, 130, 140, 150, 160, 170, 180, 190, 220, 230, 240, 250, 260, 270, 280, 290, 320, 330, 340, 350, 360, 370, 380, 390, 420, 430, 440, 450, 460, 470, 480, 490, 520, 530, 540, 550, 560, 570, 580, 590, 620, 630, 640, 650, 660, 670, 680, 690, 720, 730, 740, 750, 760, 770, 780, 790, 820, 830, 840, 850, 860, ...
U = 0 zero, 40 forty, 20 twenty,
30 thirty, 50
fifty, 60 sixty, 70 seventy, 80 eighty, 90 ninety, 120 one hundred
twenty, 130 one
hundred thirty, 140
one hundred forty, 150
one hundred fifty, 160
one hundred sixty, 170
one hundred seventy, 180
one hundred eighty, 190
one hundred ninety, 220 two hundred twenty, 230 two hundred thirty, 240 two hundred forty, 250 two hundred fifty, 260 two hundred sixty, 270 two hundred seventy, 280 two hundred eighty, 290 two hundred
ninety, 320 three
hundred twenty, 330 three hundred thirty, 340 three hundred forty, 350 three hundred fifty, 360 three hundred sixty, 370 three hundred seventy, 380 three hundred eighty, 390 three hundred
ninety, ...
Lexicographically
earliest sequence of positive integers such that the first digit
of a(n) is present in a(n+1) and the first letter of the English name of
a(n) is present in the English name of a(n+1) [corrected and extended by GK – this is now A370403 in the OEIS]:
V = 1, 14, 15, 41, 4, 24, 2, 12, 10, 13, 16, 17, 61, 6, 26, 20, 21, 22, 23, 25, 27, 28, 29, 32, 3, 30, 31, 33, 34, 35, 36, 37, 38, 39, 43, 40, 42, 44, 45, 46, 47, 48, 49, 54, 5, 50, 51, 52, 53, 55, 56, 57, 58, 59, 65, 60, 62, 63, 64, 66, 67, 68, 69, 76, 7, 70, 71, 72, 73, 74, 75, 77, 78, 79, 87, 8, 18, 11, 19, 81, 80, 82, 83, 84, 85, 86, 88, 89, 98, 9, 90, 91, 92, 93, 94, 95, 96, 97, 99, 109...
V = 1 one, 14 fourteen, 15 fifteen, 41 forty-one, 4 four, 24 twenty-four, 2 two, 12 twelve, 10 ten 13 thirteen, 16 sixteen, 17 seventeen, 61 sixty-one, 6 six, 26 twenty-six,
20 twenty, 21
twenty-one, 22
twenty-two, 23
twenty-three, 25
twenty-five, 27
twenty-seven, 28
twenty-eight, 29
twenty-nine, 32
thirty-two, 3
three, 30 thirty, 31 thirty-one, 33 thirty-three, 34 thirty-four, 35 thirty-five, 36 thirty-six, 37 thirty-seven, 38 thirty-eight, 39 thirty-nine, 43 forty-three, 40 forty, 42 forty-two, 44 forty-four, 45 forty-five, 46 forty-six, 47 forty-seven, 48 forty-eight, 49 forty-nine, 54 fifty-four, 5 five, 50 fifty, ...
Lexicographically
earliest sequence of nonnegative terms such that the last digit of a(n)
is present in a(n+1), the last letter of the English name of a(n) is
present in the English name of a(n+1) and the last letter of the French name
of a(n) is present in the French name of a(n+1) [corrected and extended by GK – this is now A370404 in the OEIS]:
W = 0, 103, 3, 23, 33, 37, 7, 17, 27, 47, 57, 67, 70, 60, 30, 40, 50, 80, 160, 90, 170, 190, 220, 20, 120, 130, 140, 150, 180, 260, 230, 240, 250, 270, 280, 320, 290, 360, 330, 340, 350, 370, 390, 460, 380, 470, 490, 560, 420, 430, 440, 450, 480, 570, 590, 620, 520, 530, 540, 550, 580, 630, 640, 650, 660, 670, 680, 690, 760, 720, 730, 740, 750, 770, 790, 860, 780, 870, 890, 960, 820, 830, 840, 850, 880, 970, 990, 1022, 2, 22, 32, 42, 52, 62, 72, 21, 1, 11, 13, 31, 15, 51, 19, 9, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 209, 219, 229, 239, 249, 259, 269, 279, 289, 299, 309, 319, 329, 339, 349, 359, 369, 379, 389, 399, 409, 419, 429, 439, 449, 459, 469, 479, 489, 499, 509, 519, 529, 539, 549, 559, 569, 579, 589, 599, 609, 619, 629, 639, 649, 659, 669, 679, 689, 699, 709, 719, 729, 739, 749, 759, 769, 779, 789, 799, 809, 819, 829, 839, 849, 859, 869, 879, 889, 899, 900, 106, 6, 26, 36, 46, 56, 61, ...
0 zero zéro
103 one hundred three cent trois
3 three trois
23 twenty-three vingt-trois
33 thirty-three trente-trois
37 thirty-seven trente-sept
7 seven sept
17 seventeen dix-sept
27 twenty-seven vingt-sept
47 forty-seven quarante-sept
57 fifty-seven cinquante-sept
67 sixty-seven soixante-sept
70 seventy soixante-dix
60 sixty soixante
30 thirty trente
40 forty quarante
50 fifty cinquante
80 eighty quatre-vingts
160 one hundred sixty cent soixante
90 ninety quatre-vingt-dix
170 one hundred seventy cent
soixante-dix
190 one hundred ninety cent quatre-vingt-dix
220 two hundred twenty deux cent vingt
20 twenty vingt
120 one hundred twenty cent vingt
130 one hundred thirty cent trente
140 one hundred forty cent quarante
150 one hundred fifty cent cinquante
180 one hundred eighty cent quatre-vingts
260 two hundred sixty deux cent soixante
230 two hundred thirty deux cent
trente
240 two hundred forty deux cent quarante
250 two hundred fifty deux cent cinquante
270 two hundred seventy deux cent soixante-dix
280 two hundred eighty deux cent quatre-vingts
320 three hundred twenty trois
cent vingt
290 two hundred ninety deux cent quatre-vingt-dix
...
Lexicographically earliest sequence of positive terms such that the first digit of a(n) is present in a(n+1), the first letter of the English name of a(n) is present in the English name of a(n+1) and the first letter of the French name of a(n) is present in the French name of a(n+1) [this is now A370405]:
X = 1, 14, 15, 41, 4, 24, 20, 21, 22, 23, 25, 26, 27, 28, 29, 82, 48, 34, 3, 13, 17, 117, 51, 5, 35, 30, 31, 32, 33, 36, 37, 38, 39, 43, 40, 42, 44, 45, 46, 47, 49, 54, 50, 52, 53, 55, 56, 57, 58, 59, 65, 6, 16, 61, 60, 62, 63, 64, 66, 67, 68, 69, 76, 7, 70, 71, 72, 73, 74, 75, 77, 78, 79, 87, 80, 81, 83, 84, 85, 86, 88, 89, 98, 90, 91, 92, 93, 94, 95, 96, 97, 99, 149, 100, 101, 102, 103, 104, 105, 106, ...
____________________
Many thanks to Giorgos and Scott!
(Dall-e creation)
Commentaires
Enregistrer un commentaire