Replace my twins, triplets, etc. by 1

(Dall-e creation)
(English version by Google below)
French
On choisit (ici) n = 1, lequel on multiplie par 2, puis le résultat par 2, puis le résultat par 2, etc.
Dès que l’une des itérations contient un bloc de deux ou plusieurs chiffres adjacents identiques, ce bloc est remplacé par le chiffre 1. Et on itère à nouveau.
Pour a(1) = 1 la suite F entre dans une boucle de 42 termes :

F = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 6136, 12272, 1172, 172, 344, 31, 62, 124, 248, 496, 992, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 611, 61, 122, 11, 1, 2, 4, 8, 16,...

Y a-t-il des boucles plus courtes ? Plus longues ? Certaines valeurs de a(n) n’entrent-elles jamais dans une boucle ?

Une suite intéressante S qui trouverait peut-être sa place dans lOEIS peut se développer à linfini : on remplace le premier terme de la boucle à venir par le plus petit entier absent jusque là. Litération se poursuivrait (avec 3 ici), sinterromperait avec un terme déjà présent, reprendrait avec un terme « frais », etc.

S = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 6136, 12272, 1172, 172, 344, 31, 62, 124, 248, 496, 992, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 611, 61, 122, 11, 3, 6, 5, ...

English 
We choose (here) n = 1, which we multiply by 2, then the result by 2, then the result by 2, etc.
As soon as one of the iterations contains a block of two or more identical adjacent digits, this block is replaced by the digit 1. And we iterate again.
For a(1) = 1 the sequence F enters a loop of 42 terms:

F = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 6136, 12272, 1172, 172, 344, 31, 62, 124, 248, 496, 992, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 611, 61, 122111, 2, 4, 8, 16,...

Are there shorter loops? Longer ? Do some values of a(n) never enter a loop?

An interesting sequence S which would perhaps find its place in the OEIS can be developed infinitely: we replace the first term of the loop to come by the smallest integer absent until then. The iteration would continue (with 3 here), interrupt with a term already present, resume with a “fresh” term, etc. 

S = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 6136, 12272, 1172, 172, 344, 31, 62, 124, 248, 496, 992, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 611, 61, 122, 11, 3, 6, 5, ...

____________________
Giorgos K. was quick to send this:

> Here are some remarks about your new seq:
Conjecture: 
All the loops for different a(1) have length 42 or 8 (most of the times 42).
If s is the starting point of the loop, then here are the first loops with length NOT equal to 42:

a(1)    s    length
234   1872      8
371    371      8
468   1872      8
742    742      8
873   1872      8
925    371      8
936   1872      8
947    371      8

As we can see all the lengths not equal to 42 are equal to 8. This holds for the first million values of a(1): lengths are equal to 42 or 8.
Now about the second seq, here are the first 100 terms + plot and Log-plot for the first 10000 terms:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 6136, 12272, 1172, 172, 344, 31, 62, 124, 248, 496, 992, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 611, 61, 122, 11, 3, 6, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 61360, 122720, 11720, 1720, 3440, 310, 620, 1240, 2480, 4960, 9920, 120, 240, 480, 960, 1920, 3840, 7680, 15360, 30720, 61440, 6110, 610, 1220, 110, 7, 14, 28, 56, 112, 9, 18, 36, 72, 144, 13, 26, 52,...
Many thanks, Giorgos – what a beauty, those waves!
____________________
Next day update (Jan. 6th, 2024)

Hans Havermann:
Giorgos: "All the loops for different a(1) have length 42 or 8."

The loops come in pairs. Known so far, minimums = 1 & 10 (lengths 42); minimums = 371 & 3710 (lengths 8); minimums = 370371 & 3703710 (lengths 8).

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 6136, 12272, 1172, 172, 344, 31, 62, 124, 248, 496, 992, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 611, 61, 122, 11, 1]

[371, 742, 1484, 2968, 5936, 11872, 1872, 3744, 371]

[370371, 740742, 1481484, 2962968, 5925936, 11851872, 1851872, 3703744, 370371]

[HH, some time later]:
I should have been able to figure this out sooner. The 371 (3710) & 370371 (3703710) extend to length-8 loops 370370371 (3703703710), 370370370371 (3703703703710), etc.

[370370371, 740740742, 1481481484, 2962962968, 5925925936, 11851851872, 1851851872, 3703703744, 370370371]

[370370370371, 740740740742, 1481481481484, 2962962962968, 5925925925936, 11851851851872, 1851851851872, 3703703703744, 370370370371]

Eric A:
Thanks for those nice pairs, Hans!
____________________
Next update (Jan. 7th, 2024)
– a private conversation with Giorgos:

EA
Hi Giorgos,
I like a lot this idea of replacing a chunk of adjacent equal digits by 1, then multiply the result by 2 and iterate. 
We see that we can easily play with a few parameters to produce and study more variants.
1) replace the chunk by 2 (instead of 1), or 3, or 4, or ...42, or anything else;
2) replace the chunk by [the chunk + 1], or [the chunk + 2] or ... [the chunk + 42];
3) multiply the result by 3 instead of 2, or by 4, or by 5, etc.

The idea is to check if the new iterations behave like the first you spotted (loops of 8 and 42 — coming by pairs as Hans H. has found),  etc.

Here is my first try by hand — ending indeed in a 16-loop (same rules as the first ones, but multiplication by 3 instead of 2):

T = 1,3,9,27,81,243,729,2187,6561,19683,59049,177147,11147,147,441,11,(1)

Second try, a(1)=2 and multiplication by 3 again:

U = 2, 6, 18, 54, 162, 4861458, 4374, 13122, 1311, 131, 393, 1179, 179, 537, 1611, 161, 483, 1449, 119, 19, 57, 171, 513, 1539, 4617, 13851, 41553, 4113, 413, 1239, 3717, 11151, 151, 453, 1359, 4077, 401, 1203, 3609, 10827, 32481,  97443,  9713, 29139, 87417, 262251, 26151, 78453, 235359, 706077, 70601, 211803, 21803, 65409, 196227, 19617, 58851, 5151, 15453, 46359, 139077, 13901, 41703, 125109, 375327, 1125981, 125981, 377943, 31943, 95829, 287487, 862461, 2587383, 7762149, 162149, 486447, 48617, 145851, 437553, 43713, 131139, 13139, 39417, 118251, 18251, 54753, 164259, 492777, 4981, 14763, 44289, 1289, 3867, 11601, 1601, 4803, 14409, 1109, 109, 327, 981, 2943, 8829, 129, 387, 1161, 161, 48, 1449, 119, 19, 57, 171, 513, 1539, 4617, 13852, 41553, 4113, 413, 1239, 3717, 11151, 151, 453, 1359, 4077, 401, 1203, 3609, 10827, 32481, 97443, 9713, 29139, 87417, 262251, 26151, 78453, 235359, 706077, 70601, 211803, 21803, 65409, 196227, 19617, 58851, 5151, 15453, 46359, 139077, 13901, 41703, 125109, 37532, 1125981, 125891, 377943, 3193, 95829, 287487,  862461, 2587383, 7762149, 162149, 486447, 48617, etc.
— I am lost and probably on a wrong track! What do you think?

GK
Let's start from the end...
Your sequence U should have stopped at the second 161...

U = 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 1311, 131, 393, 1179, 179, 537, 1611, 161, 483, 1449, 119, 19, 57, 171, 513, 1539, 4617, 13851, 41553, 4113, 413, 1239, 3717, 11151, 151, 453, 1359, 4077, 401, 1203, 3609, 10827, 32481, 97443, 9713, 29139, 87417, 262251, 26151, 78453, 235359, 706077, 70601, 211803, 21803, 65409, 196227, 19617, 58851, 5151, 15453, 46359, 139077, 13901, 41703, 125109, 375327, 1125981, 125981, 377943, 31943, 95829, 287487, 862461, 2587383, 7762149, 162149, 486447, 48617, 145851, 437553, 43713, 131139, 13139, 39417, 118251, 18251, 54753, 164259, 492777, 4921, 14763, 44289, 1289, 3867, 11601, 1601, 4803, 14409, 1109, 109, 327, 981, 2943, 8829, 129, 387, 1161, (161)
So, you have a loop of length 91.

3) Now, here are the lengths of loops of the first 100 a(1)  for different multipliers:
2-> (see seq F opening this page){42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42}

3-> (see seqs T and U above){16,91,16,91,17,91,91,31,16,16,16,91,91,91,17,16,91,91,91,91,91,16,91,31,17,91,16,16,31,16,31,91,16,91,17,91,16,91,91,91,31,91,91,16,17,91,16,16,16,17,91,91,31,91,16,16,91,91,16,91,91,91,91,91,91,16,91,91,91,91,31,31,31,16,17,91,16,91,31,31,16,91,16,16,91,91,31,16,91,16,91,91,31,91,16,91,31,91,16,16}

4->{41,41,41,41,41,41,41,41,41,41,41,41,41,3,41,41,41,41,3,41,41,41,41,41,41,3,41,41,41,41,41,41,41,41,3,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,3,41,41,41,41,41,41,41,41,3,41,41,41,3,41,41,41,41,41,41,3,41,41,3,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,3,41,41}

5->{867,867,401,867,867,401,401,867,401,867,867,867,867,401,401,13,867,401,401,867,867,867,401,867,867,867,401,867,867,401,867,39,867,867,401,13,867,401,401,867,13,867,401,867,401,401,401,867,401,867,867,867,867,401,867,867,867,867,401,867,867,867,401,867,867,867,401,39,867,401,867,867,867,867,401,13,867,401,401,13,39,13,401,867,867,401,401,867,401,401,13,867,867,401,401,13,867,401,867,867}

6->{147,6,147,147,147,147,6,147,147,147,147,6,147,7,147,147,28,147,7,6,147,147,7,147,7,147,85,147,147,147,147,28,147,7,147,147,147,147,7,147,147,6,147,147,85,147,28,147,147,147,147,28,147,147,147,147,28,7,147,147,147,28,147,7,7,147,28,57,147,6,147,6,147,147,147,7,147,147,147,147,147,6,147,7,147,147,147,147,147,147,7,6,147,147,28,147,6,147,147,147}

7->{39,513,513,39,71,6,39,513,39,39,39,39,6,513,6,39,39,39,39,513,513,39,39,513,6,513,39,39,513,513,39,513,39,39,71,513,39,513,39,39,39,6,39,39,6,39,39,39,39,71,39,513,513,513,39,513,39,39,39,6,39,39,39,39,39,39,513,39,59,39,513,513,39,39,6,513,39,39,6,513,59,39,59,39,39,513,39,39,513,39,6,39,39,513,6,513,513,513,39,39}

8->{18,18,18,18,18,18,18,18,90,18,18,18,18,18,18,18,90,18,18,18,90,18,18,18,90,18,18,18,90,18,18,18,18,90,18,90,18,18,90,18,18,18,18,18,90,18,18,18,18,18,18,18,18,18,18,18,90,18,90,18,18,18,90,18,18,18,90,18,18,18,18,90,18,18,18,18,18,18,90,18,18,18,18,90,18,18,90,18,18,90,18,18,18,18,18,18,18,18,18,18}

9->{119,119,13,119,29,119,119,119,119,119,119,13,119,119,155,119,119,119,119,119,119,119,119,119,155,119,13,119,119,13,119,119,119,119,155,119,119,119,119,119,13,119,119,119,29,119,119,119,119,29,119,119,13,119,119,119,119,119,119,119,119,119,119,119,155,119,119,13,119,119,119,119,119,119,194,119,119,119,119,119,119,13,119,119,155,119,119,119,119,119,119,13,119,119,119,119,119,13,119,119}

10->{4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}

42->{6348,6348,6348,6348,6348,6348,6348,6348,6348,6348,6348,6348,6348,6348,6348,6348,6348,6348,1263,6348,6348,6348,1263,6348,6348,6348,6348,6348,6348,6348}

2) If we substitute the chunk with [chunk+1] the sequences seem to explode to infinity...

V = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 65636, 131272, 262544, 262545, 525090, 1050180, 2100360, 211360, 212360, 424720, 849440, 849450, 1698900, 169891, 339782, 349782, 699564, 6100564, 611564, 612564, 1225128, 1235128, 2470256, 4940512, 9881024, 9891024, 19782048, 39564096, 79128192, 158256384, 316512768, 633025536, 634025636, 1268051272, 2536102544, 2536102545, 5072205090, 5072305090, 10144610180, 10145610180, 20291220360, 20291230360, 40582460720, 81164921440, 81264921450, 162529842900, 16252984291, 32505968582...

1) Finally, if we replace the chunks with 2,3,4... instead of 1, we get loops of lengths:

—chunks replaced by 2, multiplication by 2:
{12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} probably always 12

—chunks replaced by 2, multiplication by 3:{120,141,120,141,3,141,116,141,120,120,141,141,120,141,3,141,141,141,116,141,116,141,79,141,3,141,120,141,116,120,141,141,141,141,6,141,141,141,120,141,79,141,116,141,3,141,79,141,116,3,141,141,141,141,141,141,116,141,141,141,79,141,116,141,141,141,120,141,79,116,141,141,141,141,3,141,141,141,141,141,120,26,116,141,141,141,116,141,116,120,79,141,141,141,26,141,141,141,141,141}
etc.

—chunks replaced by 3, multiplication by 2:{14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14}

—chunks replaced by 3, multiplication by 3:{23,23,23,23,9,23,49,23,23,23,23,23,23,23,9,23,23,23,49,23,49,23,23,23,26,23,23,23,23,23,23,23,23,23,26,23,23,23,23,23,23,23,23,23,9,23,23,23,23,9,23,23,23,23,23,49,49,23,23,23,23,23,49,23,23,23,23,23,23,49,23,23,23,23,26,23,23,23,23,23,23,49,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23}
etc.
____________________
EA
Nice job, Giorgos – and fascinating results, for me: the regularity of the loops, even changing the initial conditions, is a question mark... It seems difficult to find rules producing a chaotic seq not entering a loop and not exploding too fast!
Merci, merci, merci Giorgos – the math universe is infinite and beautiful – wake up the babies!-)
____________________
Evening update:
HH
V = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 65636, 131272, 262544, 262545, 525090, 1050180, 2100360, 211360, 212360, 424720, 849440, 849450, 1698900, 169891, 339782, 349782, 699564, 6100564, 611564, 612564, 1225128, 1235128, 2470256, 4940512, 9881024, 9891024, 19782048, 39564096, 79128192, 158256384, 316512768, 633025536, 634025636, 1268051272, 2536102544, 2536102545, 5072205090, 5072305090, 10144610180, 10145610180, 20291220360, 20291230360, 40582460720, 81164921440, 81264921450, 162529842900, 16252984291, 32505968582, ...

I like this one. And yes, while the numbers get quickly large, their eventual sizes seem to be largely confined, say (roughly) 10^15 to 10^55.
____________________
Many thanks, Hans – your definition of the confinement made my evening, I can't even read the last figures !-)
____________________
HH
Perhaps the attached graph explains it better:
EA
Waooooow, what a marvel! – and yet another mystery (the confinement)...
_____________________
Midnight update
HH
I just calculated 100 million terms of V.
A graph of the final one million terms is attached. The smallest number in this region is 40584253184307148291. The largest is 165943212508653801005149589895625087149571210050257450. The chances of running into a duplicate of integers this large is very, very small. However, eventually it will happen (there are only a finite number of even very large integers) and when it does, we will have a loop.

EA
What can I say more? 
My thanks for the very clear explanations — and my gratitude for the wonderful blue graph!
____________________
Next day update by Giorgos K.
GK
Very nice observation by Hans!

Let's consider these numbers "random".
If you think about it, you have increasing and decreasing number of digits in the following situations:
a) Increasing
    Because the number is doubled: That is everytime the starting digit is 5,6,7,8,9, When we have consecutive doublings this happens around 30% of the time.
    Also when we have 99->100 we have +1 digit but in the next step we have 00->1 and -1 digit (so this doesn't count)

b) Decreasing
     When we have 2 or more consecutive zeros
      The probability of getting consecutive zeros depends on the length of the number.
      If the number is small then the probability is small and "doubling" is winning.
      If the number is very large then we have the opposite.
      So, I computed (an approximation) of the  "sweet spot" : That is "how big must the integer be in order for it to have consecutive zeros with probability 30%"
      It turns out that this number is (approximately) 10^40. This means that above this number the zeros are winning and the digits decrease and vice versa. So, this system "fights" between these two states and we get the "zone of equilibrium". I agree with Hans that the system must reach a loop eventually. 
____________________
Mid-March (very late) update
The wonderful February-loop update by Hans is there, on his blog (which I've read only today), and hereunder.
____________________
HH
> Confined (a loop)
> I found a loop in Éric Angelini's "confined" sequence (about which I wrote last month). Term #60614674264 (= 27651356989742597468495745) is a duplicate of term #18563532230. Differences in the lead-up terms are highlighted here:

#18563532226   6912789247435649367123936   #60614674260   6912789247185649367123936
#18563532227  13825578494871298734247872   #60614674261  13825578494371298734247872
#18563532228  13825678494871298734247872   #60614674262  13825678494371298734247872
#18563532229  27651356989742597468495744   #60614674263  27651356988742597468495744
#18563532230  27651356989742597468495745 = #60614674264  27651356989742597468495745

So we have a loop of length 42051142034. The smallest term in the loop appears to be 507434154592, so here is an abridged loop sequence (asterisk denotes the largest term; three twelve-digit local minima are also shown; indices of all these corrected February 29):

          0                                                       507434154592
          1                                                      1014868309184
          2                                                      2029736618368
          3                                                      2029736718368
          4                                                      4059473436736
          5                                                      8118946873472
          6                                                      8128946873472
          7                                                     16257893746944
          8                                                     16257893746945
          9                                                     32515787493890
         10                                                     65031574987780
         11                                                     65031574987880
         12                                                     65031574987890
         13                                                    130063149975780
         14                                                    131631410075780
         15                                                     13163141175780
         16                                                     13163141275780
         17                                                     26326282551560
         18                                                     26326282561560
         19                                                     52652565123120
         20                                                    105305130246240
        ...                                                                ...
17074586421  49512395802029907136051366345193519491458782692496790312698501120
17074586422 495123958020210007136051367345193519491458782692496790312698501220 *
17074586423   4951239580202117136051367345193519491458782692496790312698501230
        ...                                                                ...
25756695203                                                      5007793970328
25756695204                                                       517893970328
25756695205                                                      1035787940656
        ...                                                                ...
25757984145                                                      5097006463136
25757984146                                                       509716463136
25757984147                                                      1019432926272
        ...                                                                ...
27813217917                                                      6806950060736
27813217918                                                       680695160736
27813217919                                                      1361390321472
        ...                                                                ...
42051142014                                                   1128050902650182
42051142015                                                   1228050902650182
42051142016                                                   1238050902650182
42051142017                                                   2476101805300364
42051142018                                                    247610180531364
42051142019                                                    495220361062728
42051142020                                                    495230361062728
42051142021                                                    990460722125456
42051142022                                                   1000460723125456
42051142023                                                     11460723125456
42051142024                                                     12460723125456
42051142025                                                     24921446250912
42051142026                                                     24921456250912
42051142027                                                     49842912501824
42051142028                                                     99685825003648
42051142029                                                     10068582513648
42051142030                                                      1168582513648
42051142031                                                      1268582513648
42051142032                                                      2537165027296
42051142033                                                      5074330054592
42051142034                                                       507434154592
____________________
ÉA
> Bravo and thanks, Hans!
(Dall-e creation)

Commentaires

Posts les plus consultés de ce blog

A square for three (chess)

Le tripalin se présente

Some strings au cinéma Galeries