More Levenshtein distances

(Dall.e creation)

New ideas about the Levenshtein distances? Giorgos Kalogeropoulos computed the hereunder seqs – many thanks to him!

[A«Lexico-earliest seq A of distinct positive terms not ending in 0 such that the Levenshtein distance between a(n) and a(n+1) is equal to the last digit of a(n)»
A = 1, 2, 11, 12, 3, 101, 102, 13, 201, 21, 22, 4, 1001, 1002, 103, 5, 10001, 10002, 1003, 14, 2001, 2002, 203, 6, 100001, 100002, 10003, 104, 2211, 211, 111, 112, 15, 20001, 20002, 202, 23, 105, 22211, 2221, 221, 121, 122, 16, 200001, 200002, 20003, 204, 1111, 1011, 1012, 106, 222211, 22221, 2222, 212, 17....

[B«Lexico-earliest seq B of distinct positive terms such that the Levenshtein distance between a(n) and a(n+1) is equal to the first digit of a(n+1)»
B = 1, 10, 2, 12, 11, 13, 14, 15, 16, 17, 18, 19, 20, 120, 3, 21, 121, 22, 122, 23, 123, 24, 124, 25, 125, 26, 126, 27, 127, 28, 128, 29, 129, 30, 130, 100, 31, 131, 101, 32, 132, 102, 33, 133, 103, 34, 134, 104, 35, 135, 105, 36, 136, 106, 37, 137, 107, 38, 138, 108, 39, 139, 109, 119, 110, 111, 112, 113, 114, 115, 116, 117, 118, 148, 140, 141, 142, 143, 144, 145, 146, 147, 149, 159, 150, 151, 152, 153, 154, 155, 156, 157, 158, 168, 160, 161, 162, 163, 164, 165, ...

[C«Lexico-earliest seq C of distinct nonnegative terms such that the Levenshtein distance between a(n) and a(n+1) is equal to 1»
C = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 10, 11, 12, 13, 14, 15, 16, 17, 18, 28, 20,...
(this has already been studied in A118763)

[D«Lexico-earliest seq D of distinct nonnegative terms such that the Levenshtein distance between a(n) and a(n+1) is equal to 2»
D = 0, 11, 2, 10, 3, 12, 4, 13, 5, 14, 6, 15, 7, 16, 8, 17, 9, 18, 20, 1, 22, 19, 21, 30, 23, 31, 24, 32, 25, 33, 26, 34, 27, 35, 28, 36, 29, 37, 40, 38, 41, 39, 42, 50, 43, 51, 44, 52, 45, 53, 46, 54, 47, 55, 48, 56, 49, 57, 60, 58, 61, 59, 62, 70, 63, 71, 64, 72, 65, 73, 66, 74, 67, 75, 68, 76, 69, 77, 80, 78, 81, 79, 82, 90, 83, 91, 84, 92, 85, 93, 86, 94, 87, 95, 88, 96, 89, 97, 107, 110,...

[E«Lexico-earliest seq E of distinct nonnegative terms such that the Levenshtein distance between a(n) and a(n+1) is equal to 3»
E = 0, 111, 2, 100, 3, 101, 4, 102, 5, 103, 6, 104, 7, 105, 8, 106, 9, 107, 21, 108, 22, 109, 23, 110, 24, 112, 20, 113, 25, 114, 26, 115, 27, 116, 28, 117, 29, 118, 30, 119, 32, 140, 31, 120, 33, 121, 34, 122, 35, 123, 36, 124, 37, 125, 38, 126, 39, 127, 40, 128, 41, 129, 43, 150, 42, 130, 44, 131, 45, 132, 46, 133, 47, 134, 48, 135, 49, 136, 50, 137, 51, 138, 52, 139, 54, 160, 53, 141, 55, 142, 56, 143, 57, 144, 58, 145, 59, 146, 60, 147,...

[F«Lexico-earliest seq F of distinct nonnegative terms such that the Levenshtein distance between a(n) and a(n+1) is equal to 4»
F = 0, 1111, 2, 1000, 3, 1001, 4, 1002, 5, 1003, 6, 1004, 7, 1005, 8, 1006, 9, 1007, 21, 1008, 22, 1009, 23, 1010, 24, 1011, 25, 1012, 26, 1013, 27, 1014, 28, 1015, 29, 1016, 32, 1017, 33, 1018, 34, 1019, 35, 1020, 31, 1022, 36, 1021, 37, 1023, 38, 1024, 39, 1025, 41, 1026, 43, 1027, 44, 1028, 45, 1029, 46, 1030, 42, 1031, 47, 1032, 48, 1033, 49, 1034, 51, 1035, 52, 1036, 54, 1037, 55, 1038, 56, 1039, 57, 1040, 53, 1041, 58, 1042, 59, 1043, 61, 1044, 62, 1045, 63, 1046, 65, 1047, 66, 1048,...

[G«Lexico-earliest seq G of distinct nonnegative terms such that the Levenshtein distance between a(n) and a(n+1) is equal to 5»
G = 0, 11111, 2, 10000, 3, 10001, 4, 10002, 5, 10003, 6, 10004, 7, 10005, 8, 10006, 9, 10007, 21, 10008, 22, 10009, 23, 10010, 24, 10011, 25, 10012, 26, 10013, 27, 10014, 28, 10015, 29, 10016, 32, 10017, 33, 10018, 34, 10019, 35, 10020, 31, 10022, 36, 10021, 37, 10023, 38, 10024, 39, 10025, 41, 10026, 43, 10027, 44, 10028, 45, 10029, 46, 10030, 42, 10031, 47, 10032, 48, 10033, 49, 10034, 51, 10035, 52, 10036, 54, 10037, 55, 10038, 56, 10039, 57, 10040, 53, 10041, 58, 10042, 59, 10043, 61, 10044, 62, 10045, 63, 10046, 65, 10047, 66, 10048,...

GK
the pattern continues with bigger numbers.
EA
Bravo and thanks Giorgos!
Those seqs will be published soon by the OEIS.





Commentaires

Posts les plus consultés de ce blog

Confingame, 3e étape

Square my chunks and add

A square for three (chess)