Pascal's triangle with 1s

Hello Math-Fun,

I had forgotten this, by Lars Blomberg (all terms are distinct):

> The triangle starts like this:

1

2 3

4 5 6

7 9 11 8

10 16 20 19 12

14 26 36 39 31 13

15 40 62 75 70 44 17

18 55 102 137 145 114 61 21

22 73 157 239 282 259 175 82 23

(...)

As I am preparing a paper for Tangente magazine about Pascal's triangle and the OEIS, I've had the idea of an artificial such triangle, based on the same adding rules, in which all terms must contain at least a digit 1.

I came to the solution below quite quickly (using Blomberg's "diamond" method) – but I'm sure this is not the lexicographiically earliest such triangle. Any taker?

... This "diamond shape" leads to this start:
A = 1, 10, 11, 81, 21, 91, 15, 102, 112, 701, 164, 117, 214, 813, 103, 1050, 281, 331, 1027, 916, 156,…

Best,
É.
__________
Maximilian H. was quick to correct the above triangle/diamond:

Nice idea!
But one should not forget that in Pascal's "triangle" (actually, an "infinite square matrix" or rather half-plane (column index in Z = (-oo .. +oo)), the first and last nonzero element of each row n >= 1 is not arbitrarily set  to 1 but as *all* elements, including those with indices k <= 0 and k >= n, they are given by the general rule   C(n+1, k) = C(n, k-1) + C(n, k).
Only row 0 is set to  C(0,k) = delta_{0,k}.

PS: With your rules, I get 13 and 121 as the first element of the 5th and
6th row (row index 4 and 5 if the first row has index 0). See the "Diamond" below

- Maximilian

                             1
                       10      11   
                   81      21      91   
               15     102     112     701   
           13     117     214     813     103   
      121     130     331     1027    916     151   
  817     251     461     1358    1943    1067     14   
     1068    712     1819    3301    3010    1081  
         1780    2531    5120    6311    4091  
             4311    7651   11431   10402  
                11962   19082   21833  
                    31044   40915  
                        71959  
S = [1, 10, 11, 81, 21, 91, 15, 102, 112, 701, 13, 117, 214, 813, 103, 121, 130, 331, 1027, 916, 151, 817, 251, 461, 1358, 1943, 1067, 14]
                




 

Commentaires

  1. I get this "diamond":
    1
    10 11
    81 21 91
    15 102 112 701
    13 117 214 813 103
    121 130 331 1027 916 151
    817 251 461 1358 1943 1067 14
    1068 712 1819 3301 3010 1081
    1780 2531 5120 6311 4091
    4311 7651 11431 10402
    11962 19082 21833
    31044 40915
    71959

    RépondreSupprimer
  2. Ce commentaire a été supprimé par l'auteur.

    RépondreSupprimer
  3. Sorry, but it seems that multiple spaces are suppressed in these comments... :-( !

    RépondreSupprimer

Enregistrer un commentaire

Posts les plus consultés de ce blog

Beautés ?

Le tripalin se présente

Underline, reproduce