Square my chunks and add
The idea is to transform the integer a
into b and iterate.
Cut a into the number of chunks
you want, square them, add those squares.
Example
a = 1023 can
be transformed in b (last column) like this:
1² + 0² + 2² + 3² = 1 + 0 + 4 + 9 = 14 = b
1² + 0² + 23² = 1 + 0 + 529 = 530
10² + 2² + 3² = 100 + 4 + 9 = 113
10² + 23² = 100 + 529 = 629
102² + 3² = 10404 + 9 = 10413
1023² = 1046529
Question #1
Starting with 2 and iterating, what is
the shortest path ending in 1?
Here are 11 steps (left column) – can
you do better?
2 –> 2² = 4
4 –> 4² = 16
16 –> 1²
+ 6² = 1 + 36 = 37
37 –> 37² = 1369
1369
–> 1² + 3² + 6² + 9² = 1 + 9 + 36 + 81 = 127
127 –> 12² + 7² = 144 + 49 = 193
193 –> 1² + 9² + 3² = 1 + 81 + 9 = 91
91 –> 9² + 1² = 82
82 –> 8² + 2² = 64 + 4 = 68
68 –> 6² + 8² = 36 + 64 = 100
100 –> 1² + 0² + 0² = 1
1 END
Question #2
What is the shortest path starting with
3 and ending on 1 – and, in general, what are the shortest paths for all a <
100?
Question #3
a = 1233 loops, if we want: 12² + 33² = 144
+ 1089 = 1233 (this is mentionned here and there, in the OEIS)
For a < 1,000,000 what are the other
1-step looping integers like 1233 (I guess this is known), 2-steps looping, 3-steps, etc. (a few such "cycles" are visible here, in the OEIS).
____________________
Friday update by Jean-Marc Falcoz (great, thanks!-)
2
4
16....1^2 + 6^2
37....37^2
1369....1^2 + 369^2
136162....1^2 + 36^2 + 16^2 + 2^2
1557....1^2 + 5^2 + 5^2
+ 7^2
100....1^2 + 0^2 + 0^2
1
3
9
81....81^2
6561....6^2 + 56^2 + 1^2
3173....3^2 + 1^2 + 7^2
+ 3^2
68....6^2 + 8^2
100....1^2 + 0^2 + 0^2
1
4
16....1^2 + 6^2
37....37^2
1369....1^2 + 369^2
136162....1^2 + 36^2 + 16^2 + 2^2
1557....1^2 + 5^2 + 5^2
+ 7^2
100....1^2 + 0^2 + 0^2
1
Commentaires
Enregistrer un commentaire